ASReml
 User Guide

Release 4.1
Functional Specification

A R Gilmour
VSN International, Hemel Hempstead, United Kingdom
B J Gogel
University of Adelaide, Australia
B R Cullis
Universtiy of Wollongong, Australia
S J Welham
VSN International, Hemel Hempstead, United Kingdom
R Thompson
Rothamsted Research, Harpenden, United Kingdom

ASReml User Guide Release 4.1 Functional Specification

ASReml is a statistical package that fits linear mixed models using Residual Maximum Likelihood (REML). It was a joint venture between the Biometrics Program of NSW Department of Primary Industries and the Biomathematics Unit of Rothamsted Research. Statisticians in Britain and Australia have collaborated in its development.

Main authors:

A. R. Gilmour, B. J. Gogel, B. R. Cullis, S. J. Welham and R. Thompson

Other contributors:

D. Butler, M. Cherry, D. Collins, G. Dutkowski, S. A. Harding, K. Haskard, A. Kelly, S. G. Nielsen, A. Smith, A. P. Verbyla and I. M. S. White.

Author email addresses

arthur.gilmour@Cargovale.com.au
beverley.gogel@adelaide.edu.au
bcullis@uow.edu.au
sue.welham@vsni.co.uk
robin.thompson@rothamsted.ac.uk

Copyright Notice

Copyright © 2014 VSN International
All rights reserved.
Except as permitted under the Copyright Act 1968 (Commonwealth of Australia), no part of the publication may be reproduced by any process, electronic or otherwise, without specific written permission of the copyright owner. Neither may information be stored electronically in any form whatever without such permission.

Published by:

$$
\begin{array}{ll}
& \text { VSN International Ltd, } \\
& 5 \text { The Waterhouse, } \\
& \text { Waterhouse Street, } \\
& \text { Hemel Hempstead, } \\
\text { email: } & \text { HP1 1ES, UK } \\
\text { info@asreml.co.uk } \\
\text { website: } & \text { http://www.vsni.co.uk/ }
\end{array}
$$

The correct bibliographical reference for this document is:
Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J. and Thompson, R. (2014). ASReml User Guide Release 4.1 Functional Specification, VSN International Ltd, Hemel Hempstead, HP1 1ES, UK www.vsni.co.uk

Preface

ASReml is a statistical package that fits linear mixed models using Residual Maximum Likelihood (REML). It has been under development since 1993 and arose out of collaboration between Arthur Gilmour and Brian Cullis (NSW Department of Primary Industries) and Robin Thompson and Sue Welham (Rothamsted Research) to research into the analysis of mixed models and to develop appropriate software, building on their wide expertise in relevant areas including the development of methods that are both statistically and computationally efficient, the analysis of animal and plant breeding data, the analysis of spatial and longitudinal data and the production of widely used statistical software. More recently, VSN International acquired the right to ASReml from these sponsoring organizations and now directly supports Arthur Gilmour and Sue Welham for further computational developments and research on the analysis of mixed models. Release 4 of ASReml was first distributed in 2014. A major enhancement in this release is the introduction of an alternative, functional, specification of linear mixed models. For the convenience of users, three documents have been prepared, i. a guide to Release 4 using the original, still supported, model specification, i. this document which is a guide using the new functional model specification and iii a document ASReml Update: What's new in Release 4, which highlights the changes from Release 3.

Linear mixed effects models provide a rich and flexible tool for the analysis of many data sets commonly arising in the agricultural, biological, medical and environmental sciences. Typical applications include the analysis of (un)balanced longitudinal data, repeated measures analysis, the analysis of (un)balanced designed experiments, the analysis of multi-environment trials, the analysis of both univariate and multivariate animal breeding and genetics data and the analysis of regular or irregular spatial data.

ASReml provides a stable platform for delivering well established procedures while also delivering current research in the application of linear mixed models. The strength of ASReml is the use of the Average Information (AI) algorithm and sparse matrix methods for fiting the linear mixed model. This enables it to analyse large and complex data sets quite efficiently.

One of the strengths of ASReml is the wide range of variance models for the random effects in the linear mixed model that are available. There is a potential cost for this wide choice. Users should be aware of the dangers of either overfitting or attempting to fit inappropriate variance models to small or highly unbalanced data sets. We stress the importance of using
data-driven diagnostics and encourage the user to read the examples chapter, in which we have attempted to not only present the syntax of ASReml in the context of real analyses but also to indicate some of the modelling approaches we have found useful.

There are several interfaces to the core functionality of ASReml. The program name ASReml relates to the primary program. ASReml-W refers to the user interface program developed by VSN and distributed with ASReml. ASReml-R refers to the S language interface to a DLL of the core ASReml routines. GenStat uses the same core routines for its REML directive. Both of these have good data manipulation and graphical facilities.

The focus in developing ASReml has been on the core engine and it is freely acknowledged that its user interface is not to the level of these other packages. Nevertheless, as the developer's interface, it is functional, it gives access to everything that the core can do and is especially suited to batch processing and running of large models without the overheads of other systems.

This guide has 15 chapters. Chapter 1 introduces ASReml and describes the conventions used in this guide. Chapter 2 outlines some basic theory while Chapter 3 presents an overview of the syntax of ASReml through a simple example. Data file preparation is described in Chapter 4 and Chapter 5 describes how to input data into ASReml. Chapters 6 and 7 are key chapters which present the syntax for specifying the linear model and the variance models for the random eects in the linear mixed model. Chapters 8 and 9 describe special commands for multivariate and genetic analyses respectively. Chapter 10 deals with prediction of linear functions of fixed and random effects in the linear mixed model, Chapter 11 demonstrates running an ASReml job, Chapter 12 describes the merging of data files and Chapter 13 presents the syntax for forming functions of variance components. Chapter 14 gives a detailed explanation of the output files. Chapter 15 gives an overview of the error messages generated in ASReml and some guidance as to their probable cause. The guide concludes with the most extensive chapter which presents the analysis of a range of data examples.

In brief, the improvements in Release 4 include developments associated with input include generating initial values, generating a template to allow an alternative way of presenting parametric information associated with variance structures, new facilities for reading in data files and defining factor names and improved facilities for reading relationship matrices and better explanation of a simpler way of constructing variances of functions of parameters. Among the developments associated with analysis are making it easier to specify functions of variance parameters using names rather than numbers, fitting factor effects with large random regression models, such as commonly used with marker data, fitting linear relationships among variance structure parameters and calculating information criteria. The developments associated with output include writing out design matrices. A major development in Release 4 is an alternative model specification using a functional approach. Prior to Release 4 a structural specification was used in which variance models were applied by imposing variance structures on random model terms and/or the residual error term after the mixed model had been specified. In this case, the variance models were presented in a separate part of the input file. The functional specification offers an alternative to the struc-
tural specfication in which the variance structures for random model terms and the residual error term are specified in the linear mixed model definition by wrapping terms with the required variance model function. This approach is more concise, less error-prone and more automatic for specifying multi-section residual variances.

The data sets and ASReml input used in this guide are available from
http://www.vsni.co.uk/products/asreml as well as in the examples directory created under the standard installation. They remain the property of the authors or of the original source but may be freely distributed provided the source is acknowledged. The authors would appreciate feedback and suggestions for improvements to the program and this guide. Proceeds from the licensing of ASReml are used to support continued development to implement new developments in the application of linear mixed models. The developmental version is available to supported licensees via a website upon request to VSN. Most users will not need to access the developmental version unless they are actively involved in testing a new development.

Acknowledgements

We gratefully acknowledge the Grains Research and Development Corporation of Australia for their financial support for our research since 1988. Brian Cullis and Arthur Gilmour wish to thank the NSW Department of Primary Industries, and more recently the University of Wollongong, for providing a stimulating and exciting environment for applied biometrical research and consulting. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom. We sincerely thank Ari Verbyla, Dave Butler and Alison Smith, the other members of the ASReml 'team'. Ari contributed the cubic smoothing splines technology, information for the Marker map imputation, on-going testing of the software and numerous helpful discussions and insight. Dave Butler has developed the ASReml-R package. Alison contributed to the development of many of the approaches for the analysis of multi-section trials. We also thank Ian White for his contribution to the spline methodology, and Simon Harding for the licensing and installation software and for his development of the user interface program ASReml-W. The Matérn function material was developed with Kathy Haskard and Brian Cullis, and the denominator degrees of freedom material was developed with Sharon Nielsen, a Masters student with Brian Cullis. Damian Collins contributed the PREDICT !PLOT material. Greg Dutkowski has contributed to the extended pedigree options. The asremload.dll functionality is provided under license to VSN. Alison Kelly has helped with the review of the XFA models. Finally, we especially thank our close associates who continually test the enhancements. Arthur Gilmour acknowledges the grace of God through Jesus Christ our Saviour. In Him are hidden all the treasures of wisdom and knowledge. Colossians 2:3.

Contents

Preface i
List of Tables xiii
List of Figures xv
1 Introduction 1
1.1 What ASReml can do 1
1.2 Installation 2
1.3 User Interface 2
1.3.1 ASRemI-W 2
1.3.2 ConTEXT 2
1.4 How to use this guide 3
1.5 Getting assistance and the ASReml forum 3
1.6 Typographic conventions 4
2 Some theory 5
2.1 The general linear mixed model 5
2.1.1 Sigma parameterization of the linear mixed model 5
2.1.2 Partitioning the fixed and random model terms 6
2.1.3 G structure for the random model terms 6
2.1.4 Partitioning the residual error term 7
2.1.5 $\quad \mathrm{R}$ structure for the residual error term 7
2.1.6 Gamma parameterization for the linear mixed model 8
2.1.7 Parameter types 8
2.1.8 Variance structures for the random model terms 8
2.1.9 Variance models for terms with several factors 9
2.1.10 Direct product structures 10
2.1.11 Direct products in R structures 10
2.1.12 Direct products in G structures 11
2.1.13 Range of variance models for R and G structures 11
2.1.14 Combining variance models in R and G structures 12
2.2 Estimation 12
2.2.1 Estimation of the variance parameters 12
2.2.2 Estimation/prediction of the fixed and random effects 14
2.2.3 Use of the gamma parameterization 15
2.3 What are BLUPs? 15
2.4 Inference: Random effects 16
2.4.1 Tests of hypotheses: variance parameters 16
2.4.2 Diagnostics 17
2.5 Inference: Fixed effects 18
2.5.1 Introduction 18
2.5.2 Incremental and conditional Wald F Statistics 19
2.5.3 Kenward and Roger adjustments 22
2.5.4 Approximate stratum variances 23
3 A guided tour 24
3.1 Introduction 24
3.2 Nebraska Intrastate Nursery (NIN) field experiment 25
3.3 The ASReml data file 27
3.4 The ASReml command file 29
3.4.1 Generating a template 29
3.4.2 The title line 31
3.4.3 Reading the data 31
3.4.4 The data file line 31
3.4.5 Tabulation 32
3.4.6 Specifying the terms in the mixed model 32
3.4.7 Variance structures 32
3.4.8 Prediction 33
3.5 Running the job 33
3.6 Description of output files 34
3.6.1 The .asr file 34
3.6.2 The .sln file 35
3.6.3 The . yht file 37
3.7 Tabulation, predicted values and functions of the variance components 37
4 Data file preparation 40
4.1 Introduction 40
4.2 The data file 40
4.2.1 Free format data files 41
4.2.2 Fixed format data files 42
4.2.3 Preparing data files in Excel 42
4.2.4 Binary format data files 43
5 Command file: Reading the data 44
5.1 Introduction 44
5.2 Important rules 44
5.3 Title line 46
5.4 Specifying and reading the data 46
5.4.1 Data field definition syntax 47
5.4.2 Storage of alphabetic factor labels 49
5.4.3 Ordering factor levels 50
5.4.4 Skipping input fields 50
5.5 Transforming the data 51
5.5.1 Transformation syntax 53
5.5.2 QTL marker transformations 58
5.5.3 Remarks concerning transformations 59
5.5.4 Special note on covariates 61
5.6 Datafile line 61
5.6.1 Data line syntax 61
5.7 Data file qualifiers 62
5.7.1 Combining rows from separate files 65
5.8 Job control qualifiers 65
6 Command file: Specifying the terms in the mixed model 86
6.1 Introduction 86
6.2 Specifying model formulae in ASReml 87
6.2.1 General rules 87
6.2.2 Examples 93
6.3 Fixed terms in the model 93
6.3.1 Primary fixed terms 93
6.3.2 Sparse fixed terms 94
6.4 Random and residual terms in the variance component model 94
6.5 Interactions and conditional factors 95
6.5.1 Interactions 95
6.5.2 Expansions 95
6.5.3 Conditional factors 95
6.5.4 Associated Factors 96
6.6 Alphabetic list of model functions 97
6.7 Weights 101
6.8 Generalized Linear (Mixed) Models 101
6.8.1 Generalized Linear Mixed Models 104
6.9 Missing values 105
6.9.1 Missing values in the response 105
6.9.2 Missing values in the explanatory variables 105
6.10 Some technical details about model fitting in ASReml 106
6.10.1 Sparse versus dense 106
6.10.2 Ordering of terms in ASReml 106
6.10.3 Aliassing and singularities 106
6.10.4 Examples of aliassing 107
6.11 Wald F Statistics 108
7 Command file: Specifying the variance structures 109
7.1 Applying variance models to random terms 110
7.2 Process to define a consolidated model term 110
7.2.1 Modelling a single variance structure over several model terms 112
7.3 Applying variance structures to the residual error term 114
7.3.1 Two rules for defining the residual error term 115
7.3.2 Using sat () to specify the residual model term for data with sections 116
7.4 Identifiability 117
7.5 A sequence of variance structures for the NIN data 117
7.6 Sigma versus gamma parameterization 122
7.6.1 Which parameterization does ASReml use for estimation? 122
7.6.2 Switching from the gamma to the sigma parameterization 122
7.7 Variance model function qualifiers 124
7.7.1 Parameter equality constraints $!=s$ 124
7.7.2 New R4 Ways to supply distances in one-dimensional metric based mod- els ! COORD v 126
7.7.3 Your own program !Fi 127
7.7.4 Parameter space constraints ! $\mathrm{G} s$ 128
7.7.5 New R4 Initial values ! INIT v 129
7.7.6 About subsections ! SUBSECTION f 130
7.7.7 Parameter types!Ts 130
7.7.8 Equating variance structures !USE t 131
7.8 Setting relationships among variance structure parameters 132
7.8.1 Simple relationships among variance structure parameters 132
7.8.2 Fitting linear relationships among variance structure parameters 133
7.9 Ways to present initial values to ASReml 135
7.9.1 Using templates to set parametric information associated with variance structures using .tsv and .msv files 136
7.9.2 Using estimates from simpler models 138
7.10 Default variance structures in ASReml 139
7.11 Variance model functions available in ASReml 140
7.11.1 Forming variance models from correlation models 141
7.11.2 Non singular variance matrices 141
7.11.3 Notes on the variance models 142
7.11.4 Notes on Matérn 142
7.11.5 Notes on power models 144
7.11.6 Notes on Factor Analytic models 144
7.12 Variance models available in ASReml 147
8 Command file: Multivariate analysis 153
8.1 Introduction 153
8.1.1 Repeated measures on rats 153
8.1.2 Wether trial data 154
8.2 Model specification 154
8.3 Residual variance structures 155
8.3.1 Specifying multivariate variance structures in ASReml 155
9 Command file: Genetic analysis 157
9.1 Introduction 157
9.2 The command file 157
9.3 The pedigree file 158
9.4 Reading in the pedigree file 159
9.5 Genetic groups 162
9.6 Reading a user defined (inverse) relationship matrix 163
9.6.1 Genetic groups in GIV matrices 166
9.6.2 The example continued 166
9.7 The reduced animal model (RAM) 167
9.8 Factor effects with large Random Regression models 169
10 Tabulation of the data and prediction from the model 175
10.1 Introduction 175
10.2 Tabulation 175
10.3 Prediction 176
10.3.1 Underlying principles 176
10.3.2 Predict syntax 178
10.3.3 Predict failure 181
10.3.4 Associated factors 187
10.3.5 Complicated weighting with !PRESENT 189
10.3.6 Examples 191
10.3.7 New R4 Prediction using two-way interaction effects 192
11 Command file: Running the job 193
11.1 Introduction 193
11.2 The command line 193
11.2.1 Normal run 193
11.2.2 Processing a .pin file 194
11.2.3 Forming a job template from a data file 194
11.3 Command line options 195
11.3.1 Prompt for arguments (A) 197
11.3.2 Output control (B, !OUTFOLDER, ! XML) 197
11.3.3 Debug command line options (D, E) 198
11.3.4 Graphics command line options (G, H, I, N, Q) 198
11.3.5 Job control command line options (C, F, O, R) 199
11.3.6 Workspace command line options (S, W) 199
11.3.7 Examples 200
11.4 Advanced processing arguments 200
11.4.1 Standard use of arguments 200
11.4.2 Prompting for input 201
11.4.3 Paths and Loops 202
11.4.4 Order of Substitution 206
11.5 Performance issues 206
11.5.1 Multiple processors 206
11.5.2 Slow processes 206
11.5.3 Timing processes 207
12 Command file: Merging data files 208
12.1 Introduction 208
12.2 Merge Syntax 208
12.3 Examples 210
13 Functions of variance components 211
13.1 Introduction 211
13.2 Syntax 211
13.2.1 Functions of components 213
13.2.2 Convert CORUH and XFA to US 214
13.2.3 Correlation 215
13.2.4 A more detailed example 215
13.3 VPREDICT: PIN file processing 217
14 Description of output files 218
14.1 Introduction 218
14.2 An example 220
14.3 Key output files 220
14.3.1 The .asr file 220
14.3.2 The .sln file 224
14.3.3 The .yht file 225
14.4 Other ASReml output files 226
14.4.1 The .aov file 226
14.4.2 The .asl file 229
14.4.3 The .dpr file 229
14.4.4 The .msv file 229
14.4.5 The .pvc file 230
14.4.6 The .pvs file 231
14.4.7 The .res file 231
14.4.8 The .rsv file 238
14.4.9 The .tab file 239
14.4.10 The .tsv file 239
14.4.11 The .vrb file 240
14.4.12 The .vvp file 241
14.5 ASReml output objects and where to find them 241
15 Error messages 245
15.1 Introduction 245
15.2 Common problems 246
15.3 Things to check in the .asr file 248
15.4 An example 248
15.5 Information, Warning and Error messages 255
16 Examples 269
16.1 Introduction 269
16.2 Split plot design - Oats 269
16.3 Unbalanced nested design - Rats 274
16.4 Source of variability in unbalanced data - Volts 277
16.5 Balanced repeated measures - Height 280
16.6 Spatial analysis of a field experiment - Barley 287
16.7 Unreplicated early generation variety trial - Wheat 293
16.8 Paired Case-Control study - Rice 299
16.8.1 Standard analysis 301
16.8.2 A multivariate approach 305
16.8.3 Interpretation of results 308
16.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines - Oranges 310
16.10 Multivariate animal genetics data - Sheep 318
16.10.1 Half-sib analysis 318
16.10.2 Animal model 328
Bibliography 334

List of Tables

3.1 Trial layout and allocation of varieties to plots in the NIN field trial 26
5.1 List of transformation qualifiers and their actions with examples 54
5.2 Qualifiers relating to data input and output 62
5.3 List of commonly used job control qualifiers 66
5.4 List of occasionally used job control qualifiers 69
5.5 List of rarely used job control qualifiers 74
5.6 List of very rarely used job control qualifiers 83
6.1 Summary of reserved words, operators and functions 90
6.2 Alphabetic list of model functions and descriptions 97
6.3 Link qualifiers and functions 102
6.4 GLM distribution qualifiers The default link is listed first followed by per- mitted alternatives. 102
6.5 Examples of aliassing in ASReml 107
7.1 List of common variance model functions, their type (correlation or variance), the form of the variance matrix generated (\boldsymbol{C} for correlation, \boldsymbol{V} for variance matrix, \boldsymbol{S} for scaled variance matrix), and a brief description. Parameters $\sigma_{i}^{2}>0$ are variances, $-1<\rho_{i}<1$ are correlations. Subscipt c denotes parameter held in common across all rows/columns. 111
7.2 Building consolidated model terms in ASReml 112
7.3 G structure for the random terms (magenta) and R structure for the residual error term (cyan) under both the sigma and gamma parameterizations, and the corresponding sigma(s)/gamma(s) under each parameterization for the series of NIN data examples 123
7.4 Variance model function qualifiers available in ASReml 125
7.5 Examples of constraining variance parameters in ASReml 126
7.6 Details of the variance models available in ASReml 147
9.1 List of pedigree file qualifiers 160
10.1 List of prediction qualifiers 182
10.2 List of predict plot options 184
10.3 Trials classified by region and location 187
10.4 Trial means 187
10.5 Location means 187
11.1 Command line options 196
11.2 The use of arguments in ASReml 201
11.3 High level qualifiers 202
12.1 List of MERGE qualifiers 209
14.1 Summary of ASReml output files 218
14.2 ASReml output objects and where to find them 241
15.1 Some information messages and comments 256
15.2 List of warning messages and likely meaning(s) 257
15.3 Alphabetical list of error messages and probable cause(s)/remedies 260
16.1 A split-plot field trial of oat varieties and nitrogen application 269
16.2 Rat data: AOV decomposition 274
16.3 REML log-likelihood ratio for the variance components in the voltage data 279
16.4 Summary of variance models fitted to the plant data 281
16.5 Summary of Wald F statistics for fixed effects for variance models fitted to the plan 287
16.6 Field layout of Slate Hall Farm experiment 288
16.7 Summary of models for the Slate Hall data 293
16.8 Estimated variance components from univariate analyses of bloodworm data. (a) Model with homogeneous variance for all terms and (b) Model with het- erogeneous variance for interactions involving tmt 303
16.9 Equivalence of random effects in bivariate and univariate analyses 305
16.10 Estimated variance parameters from bivariate analysis of bloodworm data 307
16.11 Orange data: AOV decomposition 313
16.12 Sequence of models fitted to the Orange data 314
16.13 REML estimates of a subset of the variance parameters for each trait for the genetic example, expressed as a ratio to their asymptotic s.e. 319
16.14 Wald F statistics of the fixed effects for each trait for the genetic example 320
16.15 Variance models fitted for each part of the ASReml job in the analysis of the genetic example 322

List of Figures

5.1 Variogram in 4 sectors for Cashmore data 83
14.1 Residual versus Fitted values 225
14.2 Variogram of residuals 236
14.3 Plot of residuals in field plan order 237
14.4 Plot of the marginal means of the residuals 237
14.5 Histogram of residuals 238
16.1 Residual plot for the rat data 276
16.2 Residual plot for the voltage data 279
16.3 Trellis plot of the height for each of 14 plants 280
16.4 Residual plots for the EXP variance model for the plant data 283
16.5 Sample variogram of the residuals from the AR1×AR1 model 290
16.6 Sample variogram of the residuals from the AR1 \times AR1 model for the Tulli- bigeal data 296
16.7 Sample variogram of the residuals from the AR $1 \times$ AR1 + pol (column, -1) model for the Tullibigeal data 297
16.8 Rice bloodworm data: Plot of square root of root weight for treated versus control 300
16.9 BLUPs for treated for each variety plotted against BLUPs for control 307
16.10 Estimated deviations from regression of treated on control for each variety plotted against estimate for control 308
16.11 Estimated difference between control and treated for each variety plotted against estimate for control 309
16.12 Trellis plot of trunk circumference for each tree 310
16.13 Fitted cubic smoothing spline for tree 1 312
16.14 Plot of fitted cubic smoothing spline for model 1 315
16.15 Trellis plot of trunk circumference for each tree at sample dates (adjusted for season effects), with fitted profiles across time and confidence intervals 316
16.16 Plot of the residuals from the nonlinear model of Pinheiro and Bates 317

1 Introduction

1.1 What ASReml can do

ASReml (pronounced $A S R e m e l$) is used to fit linear mixed models to quite large data sets with complex variance models. It extends the range of variance models available for the analysis of experimental data. ASReml has application in the analysis of

- (un)balanced longitudinal data,
- repeated measures data (multivariate analysis of variance and spline type models),
- (un)balanced designed experiments,
- multi-environment trials and meta analysis,
- univariate and multivariate animal breeding and genetics data (involving a relationship matrix for correlated effects),
- regular or irregular spatial data.

The engine of ASReml underpins the REML procedure in GENSTAT. An interface for R called ASReml-R is available and runs under the same license as the ASReml program. While these interfaces will be adequate for many analyses, some large problems will need to use ASReml. The ASReml user interface is terse. Most effort has been directed towards efficiency of the engine. It normally operates in a batch mode.

Problem size depends on the sparsity of the mixed model equations and the size of your computer. However, models with 500,000 effects have been fitted successfully. The computational efficiency of ASReml arises from using the Average Information REML procedure (giving quadratic convergence) and sparse matrix operations. ASReml has been operational since March 1996 and is updated periodically.

1.3 User Interface

1.2 Installation

Installation instructions are distributed with the program. If you require help with installation or licensing, please email support@asreml.co.uk.

1.3 User Interface

ASReml is essentially a batch program with some optional interactive features. The typical sequence of operations when using ASReml is

- Prepare the data (typically using a spreadsheet or data base program)
- Export that data as an ASCII file (for example export it as a .csv (comma separated values) file from Excel)
- Prepare a job file with filename extension .as
- Run the job file with ASReml
- Review the various output files
- revise the job and re run it, or
- extract pertinent results for your report.

You need an ASCII editor to prepare input files and review and print output files. Two commonly used editors are:

1.3.1 ASRemI-W

The ASReml-W interface is a graphical tool allowing the user to edit programs, run and then view the output, before saving results. It is available on the following platforms:

- Windows (32-bit and 64 -bit),
- Linux (32-bit and 64 -bit, various incantations),

ASReml-W has a built-in help system explaining its use.

1.3.2 ConTEXT

ConTEXT is a third-party freeware text editor, with programming extensions which make it a suitable environment for running ASReml under Windows. The ConTEXT directory on

1.5 Getting assistance and the ASReml forum

the CD-ROM includes installation files and instructions for configuring it for use in ASReml. Full details of ConTEXT are available from http://www.contexteditor.org/.

1.4 How to use this guide

The guide consists of 16 chapters. Chapter 1 introduces ASReml and describes the conventions used in the guide. Chapter 2 outlines some basic theory which you may need to come back to.

New ASReml users are advised to read Chapter 3 before attempting to code their first job. It presents an overview of basic ASReml coding demonstrated on a real data example. Chapter 16 presents a range of examples to assist users further. When coding your first job, look for an example to use as a model.

Data file preparationis described in Chapter 4, and Chapter 5 describes how to input data into ASReml. Chapters 6 and 7 are key chapters which present the syntax for specifying the linear model and the variance models for the random effects in the linear mixed model.Variance modelling is a complex aspect of analysis. We introduce variance modelling in ASReml by example in Chapter 16.

Chapters 8 and 9 describe special commands for multivariate and genetic analyses respectively. Chapter 10 deals with prediction offixed and random effects from the linear mixed model and Chapter 13 presents the syntax for forming functions of variance components such as heritability.

Chapter 11 discusses the operating system level command for running an ASReml job. Chapter 12 describes a new data merging facility. Chapter 14 gives a detailed explanationof the output files. Chapter 15 gives an overview of the error messages generated in ASReml and some guidance as to their probable cause.

1.5 Getting assistance and the ASReml forum

The ASReml help accessable through ASReml-W can also be linked to ConText or accessed directly (ASReml.chm).

There is a User Area on the website (http://www.VSNi.co.uk select ASReml and then User Area) which contains contributed material that may be of assistance.

Users with a support contract with VSN should email support@asreml.co.uk for assistance with installation and running ASReml. When requesting help, please send the input command file, the data file and the corresponding primary output file along with a description of the problem. All ASReml users (including unsupported users) are encouraged to join the ASReml forum; register now at http://www.vsni.co.uk/forum.

1.6 Typographic conventions

If ASReml appears to be failing, then please send details of the problem to support@vsni.co.uk.

1.6 Typographic conventions

A hands on approach is the best way to develop a working understanding of a new computing package. We therefore begin by presenting a guided tour of ASReml using a sample data set for demonstration (see Chapter 3). Throughout the guide new concepts are demonstrated by example wherever possible.

In this guide you will find framed sample boxes to the right of the page as shown here. These contain ASReml command file (sample) code. Note that

- the code under discussion is highlighted in bold type for easy identification,
- the continuation symbol (\vdots) is used to

```
An example ASReml code box
bold type highlights sections of code
currently under discussion
remaining code is not highlighted
: indicates that some of the original
code is omitted from the display
``` indicate that some of the original code is omitted.
Data examples are displayed in larger boxes in the body of the text, see, for example, page 40. Other conventions are as follows:
- keyboard key names appear in SMALLCAPS, for example, TAB and ESC,
- example code within the body of the text is in this size and font and is highlighted in bold type, see pages 33 and 49,
- in the presentation of general ASReml syntax, for example [path] asreml basename[.as] [arguments]
- typewriter font is used for text that must be typed verbatim, for example, asreml and .as after basename in the example,
- italic font is used to name information to be supplied by the user, for example, basename stands for the name of a file with an .as filename extension,
- square brackets indicate that the enclosed text and/or arguments are not always required. Do not enter these square brackets.
- ASReml output is in this size and font, see page 34,
- this font is used for all other code.

\section*{2 Some theory}

\subsection*{2.1 The general linear mixed model}

If \(\boldsymbol{y}(n \times 1)\) denotes the vector of observations, the general linear mixed model can be written as
\[
\begin{equation*}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\tau}+\boldsymbol{Z} \boldsymbol{u}+\boldsymbol{e} \tag{2.1}
\end{equation*}
\]
where \(\boldsymbol{\tau}(p \times 1)\) is a vector of fixed effects, \(\boldsymbol{X}(n \times p)\) is the design matrix of full column rank that associates observations with the appropriate combination of fixed effects, \(\boldsymbol{u}(q \times 1)\) is a vector of random effects, \(\boldsymbol{Z}(n \times q)\) is the design matrix that associates observations with the appropriate combination of random effects, and \(\boldsymbol{e}(n \times 1)\) is the vector of residual errors.

\subsection*{2.1.1 Sigma parameterization of the linear mixed model}

Model (2.1) is called a linear mixed model or linear mixed effects model. It is assumed
\[
\left[\begin{array}{l}
\boldsymbol{u} \tag{2.2}\\
\boldsymbol{e}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
\boldsymbol{G}\left(\boldsymbol{\sigma}_{g}\right) & \mathbf{0} \\
\mathbf{0} & \boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)
\end{array}\right]\right)
\]
where the matrices \(\boldsymbol{G}\) and \(\boldsymbol{R}_{v}\) are variance matrices for \(\boldsymbol{u}\) and \(\boldsymbol{e}\) and are functions of parameters \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\). This requires that the random effects \(\boldsymbol{u}\) and residual errors \(\boldsymbol{e}\) are uncorrelated. The variance matrix for \(\boldsymbol{y}\) is then of the form
\[
\begin{equation*}
\operatorname{var}(\boldsymbol{y})=\boldsymbol{Z} \boldsymbol{G}\left(\boldsymbol{\sigma}_{g}\right) \boldsymbol{Z}^{\top}+\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right) \tag{2.3}
\end{equation*}
\]
which we will refer to as the sigma parameterization of the G and R variance structures, and the individual variance structure parameters in \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\) will be referred to as sigmas. The variance models given by \(\boldsymbol{G}\) and \(\boldsymbol{R}_{v}\) are referred to as \(G\) structures and \(R\) structures respectively.

We illustrate these concepts using the simplest linear mixed model, that is, the one-way classification.

Example 2.1 A simple example Consider a one-way classification comprising a single random effect \(\boldsymbol{u}\), and a residual error term \(\boldsymbol{e}\). The two random components of this model,

\subsection*{2.1 The general linear mixed model}
namely \(\boldsymbol{u}\) and \(\boldsymbol{e}\), are each assumed to be independent and identically distributed (IID) and to follow a normal distribution such that \(\boldsymbol{u} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \boldsymbol{I}_{q}\right)\) and \(\boldsymbol{e} \sim N\left(\mathbf{0}, \sigma_{e}^{2} \boldsymbol{I}_{n}\right)\). Hence the variance of \(\boldsymbol{y}\) has the form
\[
\begin{equation*}
\operatorname{var}(\boldsymbol{y})=\sigma_{u}^{2} \boldsymbol{Z} \boldsymbol{Z}^{\top}+\sigma_{e}^{2} \boldsymbol{I}_{n} \tag{2.4}
\end{equation*}
\]

This model has two variance structure parameters or sigmas: the variance component \(\sigma_{u}^{2}\) associated with \(\boldsymbol{u}\), and the variance component \(\sigma_{e}^{2}\) associated with \(\boldsymbol{e}\). Mapping this equation back to (2.3), we have \(\boldsymbol{\sigma}_{g}=\sigma_{u}^{2}, \boldsymbol{G}\left(\boldsymbol{\sigma}_{g}\right)=\sigma_{u}^{2} \boldsymbol{I}_{q}, \boldsymbol{\sigma}_{r}=\sigma_{e}^{2}\) and \(\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)=\sigma_{e}^{2} \boldsymbol{I}_{n}\).

\subsection*{2.1.2 Partitioning the fixed and random model terms}

Typically, \(\boldsymbol{\tau}\) and \(\boldsymbol{u}\) are composed of several model terms, that is, \(\boldsymbol{\tau}\) can be partitioned as \(\boldsymbol{\tau}=\left[\boldsymbol{\tau}_{1}^{\top} \ldots \boldsymbol{\tau}_{t}^{\top}\right]^{\top}\) and \(\boldsymbol{u}\) can be partitioned as \(\boldsymbol{u}=\left[\boldsymbol{u}_{1}^{\top} \ldots \boldsymbol{u}_{b}^{\top}\right]^{\top}\), with \(\boldsymbol{X}\) and \(\boldsymbol{Z}\) partitioned conformably as \(\boldsymbol{X}=\left[\boldsymbol{X}_{1} \ldots \boldsymbol{X}_{t}\right]\) and \(\boldsymbol{Z}=\left[\boldsymbol{Z}_{1} \ldots \boldsymbol{Z}_{b}\right]\).

\subsection*{2.1.3 \(\quad G\) structure for the random model terms}

For \(\boldsymbol{u}\) partitioned as \(\boldsymbol{u}=\left[\boldsymbol{u}_{1}^{\top} \ldots \boldsymbol{u}_{b}^{\top}\right]^{\top}\), we impose a direct sum structure on the matrix \(\boldsymbol{G}\), written
\[
\boldsymbol{G}=\oplus_{i=1}^{b^{\prime}} \boldsymbol{G}_{i}=\left[\begin{array}{ccccc}
\boldsymbol{G}_{1} & 0 & \ldots & 0 & 0 \\
0 & \boldsymbol{G}_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \boldsymbol{G}_{b^{\prime}-1} & 0 \\
0 & 0 & \ldots & 0 & \boldsymbol{G}_{b^{\prime}}
\end{array}\right]
\]
where \(\oplus\) is the direct sum operator, each \(\boldsymbol{G}_{i}\) is of size \(q_{i}\) and \(q=\sum_{i} q_{i}\).
The default assumption is that each random model term generates one component of this direct sum (then \(b^{\prime}=b\) and \(\operatorname{var}\left(\boldsymbol{u}_{i}\right)=\boldsymbol{G}_{i}\) for \(i=1 \ldots b\)). This means that the random effects from any two distinct model terms are uncorrelated. However, in some models, one component of \(\boldsymbol{G}\) may apply across several model terms, for example, in random coefficient regression where the random intercepts and slopes for subjects are correlated. To accommodate these cases, one component of \(\boldsymbol{G}\) may apply across several model terms (then \(b^{\prime}<b\)). In some other (less likely but possible) cases, we may wish to separate one model term over several independent parts (then \(b^{\prime}>b\)), see Section 7.2.1.

Example 2.2 Variance components mixed models

Building example 2.1 to a linear mixed model with more than one \((b>1)\) random effect (typically known as a variance components mixed model), the random effects \(\boldsymbol{u}_{i}\) in \(\boldsymbol{u}\), and the residual errors \(\boldsymbol{e}\), are assumed pairwise uncorrelated and to each be normally distributed with mean zero and variance given by
\[
\operatorname{var}\left(\boldsymbol{u}_{i}\right)=\sigma_{u_{i}}^{2} \boldsymbol{I}_{q_{i}}
\]

\subsection*{2.1 The general linear mixed model}
and
\[
\operatorname{var}(\boldsymbol{e})=\sigma_{e}^{2} \boldsymbol{I}_{n}
\]
where \(\boldsymbol{I}_{q_{i}}\) and \(\boldsymbol{I}_{n}\) are identity matrices of dimension \(q_{i}\) and \(n\), respectively. In this case
\[
\begin{equation*}
\operatorname{var}(\boldsymbol{y})=\sum_{i=1}^{b} \sigma_{u_{i}}^{2} \boldsymbol{Z}_{i} \boldsymbol{Z}_{i}^{\top}+\sigma_{e}^{2} \boldsymbol{I}_{n} \tag{2.5}
\end{equation*}
\]

\subsection*{2.1.4 Partitioning the residual error term}

As for the fixed and random model terms, it is often useful or appropriate to consider a partitioning of the vector of residual errors \(\boldsymbol{e}\) according to some conditioning factor. We use the term section to describe this partitioning and the most common example of the use of sections in \(\boldsymbol{e}\) is when we wish to allow sections in the data to have different variance structures. For example, in the analysis of multi-environment trials (METs) it is natural to expect that each trial will require a separate (possibly spatial) error structure. In this case, for \(s\) sections we have \(\boldsymbol{e}=\left[\boldsymbol{e}_{1}^{\top}, \boldsymbol{e}_{2}^{\top}, \ldots, \boldsymbol{e}_{s}^{\top}\right]^{\top}\) assuming that the data vector is ordered by section, and where \(\boldsymbol{e}_{j}\) represents the vector of errors for the \(j^{\text {th }}\) section.

\subsection*{2.1.5 \(\quad \mathrm{R}\) structure for the residual error term}

For \(\boldsymbol{e}\) partitioned as \(\boldsymbol{e}=\left[\boldsymbol{e}_{1}^{\top}, \boldsymbol{e}_{2}^{\top}, \ldots, \boldsymbol{e}_{s}^{\top}\right]^{\top}\) we allow the matrix \(\boldsymbol{R}_{v}\) to have a similar direct sum structure, with
\[
\boldsymbol{R}_{v}=\oplus_{j=1}^{s} \boldsymbol{R}_{v_{j}}=\left[\begin{array}{ccccc}
\boldsymbol{R}_{v_{1}} & 0 & \ldots & 0 & 0 \\
0 & \boldsymbol{R}_{v_{2}} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \boldsymbol{R}_{v_{s-1}} & 0 \\
0 & 0 & \ldots & 0 & \boldsymbol{R}_{v_{s}}
\end{array}\right]
\]
for \(s \geq 1\) sections and the data ordered by section. Note that it may be necessary to reorder (re-number) the data units in order to achieve this structure. In ASReml it is now straightforward to apply possibly different variance structures to each component of \(\boldsymbol{R}_{v}\).

In many cases, the residual errors (e) can be expected to share a common variance structure. In this case there is only one section \((s=1)\).

Typically a variance structure is specified for each random model term and often more complex models than the simple IID model are specified. ASReml offers a wide range of variance models to choose from. A full listing is in Table 7.6 and details are provided in Chapter 7.

\subsection*{2.1 The general linear mixed model}

\subsection*{2.1.6 Gamma parameterization for the linear mixed model}

The sigma parameterization of model (2.3) is one possible parameterization of var \((\boldsymbol{y})\). In this parameterization both \(\boldsymbol{G}\left(\boldsymbol{\sigma}_{g}\right)\) and \(\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)\) are variance matrices and the variance structure parameters in \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\) are referred to as sigmas, see above. Other parameterizations are possible and are sometimes useful. For example, in some of the early development of REML for the traditional mixed model of (2.5), the variance matrix was parameterized as the equivalent model
\[
\begin{equation*}
\operatorname{var}(\boldsymbol{y})=\sigma_{e}^{2}\left(\sum_{i}^{b} \gamma_{g_{i}} \boldsymbol{Z}_{i} \boldsymbol{Z}_{i}^{\top}+\boldsymbol{I}_{n}\right) \tag{2.6}
\end{equation*}
\]
for \(\gamma_{g_{i}}\) being the ratio of the variance component for the random term \(\boldsymbol{u}_{i}\) relative to error variance, that is, \(\gamma_{g_{i}}=\sigma_{u_{i}}^{2} / \sigma_{e}^{2}\). In this case ASReml calculated a simple estimate of \(\sigma_{e}^{2}\) and initial values for the iterative process were specified in terms of the ratios \(\gamma_{g_{i}}\) rather than in terms of the variance components \(\sigma_{u_{i}}^{2}\). It was often easier to specify initial values in terms of these ratios rather than the variance components which is why this approach was adopted. Where \(\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)\) can be written as a scaled correlation matrix, that is, \(\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)=\sigma_{e}^{2} \boldsymbol{R}_{c}\left(\boldsymbol{\gamma}_{r}\right)\), this suggests the alternative specification of (2.2)
\[
\left[\begin{array}{l}
\boldsymbol{u} \tag{2.7}\\
\boldsymbol{e}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right], \sigma_{e}^{2}\left[\begin{array}{cc}
\boldsymbol{G}\left(\boldsymbol{\gamma}_{g}\right) & \mathbf{0} \\
\mathbf{0} & \boldsymbol{R}_{c}\left(\boldsymbol{\gamma}_{r}\right)
\end{array}\right]\right)
\]
where \(\gamma_{g}\) and \(\gamma_{r}\) represent the variance structure parameters associated with scaled (by \(\sigma_{e}^{2}\)) variance matrices. In this case
\[
\begin{equation*}
\operatorname{var}(\boldsymbol{y})=\sigma_{e}^{2}\left(\boldsymbol{Z} \boldsymbol{G}\left(\boldsymbol{\gamma}_{g}\right) \boldsymbol{Z}^{\top}+\boldsymbol{R}_{c}\left(\boldsymbol{\gamma}_{r}\right)\right), \tag{2.8}
\end{equation*}
\]
which we will refer to as the gamma parameterization, and the individual variance structure parameters in \(\gamma_{g}\) and \(\gamma_{r}\) will be referred to as gammas. ASReml switches between the sigma and gamma parameterizations for estimation. This is discussed in Section 7.6.

\subsection*{2.1.7 Parameter types}

Each sigma in \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\) and each gamma in \(\boldsymbol{\gamma}_{g}\) and \(\boldsymbol{\gamma}_{r}\) has a parameter type, for example, variance components, variance component ratios, autocorrelation parameters, factor loadings. Furthermore, the parameters in \(\boldsymbol{\sigma}_{g}, \boldsymbol{\sigma}_{r}, \boldsymbol{\gamma}_{g}\) and \(\boldsymbol{\gamma}_{r}\) can span multiple types. For example, the spatial analysis of a simple column trial would involve variance components (sigma parameterization) or variance component ratios (gamma parameterization) and spatial autocorrelation parameters.

\subsection*{2.1.8 Variance structures for the random model terms}

The random model terms \(\boldsymbol{u}_{i}\) in \(\boldsymbol{u}\) define the random effects and associated design matrices, \(\boldsymbol{Z}_{i} \in \boldsymbol{Z}\), but additional information is required before the model can be fitted. This extra

\subsection*{2.1 The general linear mixed model}
step involves defining the \(G\) structure for each term. In Release 4, this is achieved by using functions to directly apply variance models to the individual component factors in a random model term to define \(\boldsymbol{G}_{i}\). This produces a consolidated model term that simultaneously defines both the design matrix \(\left(\boldsymbol{Z}_{i}\right)\) and variance model \(\left(\boldsymbol{G}_{i}\right)\). This process is described in detail in Chapter 7 with examples.

\subsection*{2.1.9 Variance models for terms with several factors}

A random model term may comprise either a single factor or several component factors to give a compound model term. Consider a compound model term represented by A.B, where the component factors A and B have \(m\) and \(n\) levels respectively and the "." operator forms a term with levels corresponding to the combinations of all levels of A with all levels of B . The effects \(a b_{i j}\) for A.B are generated with the levels of B nested in the levels of A, ie. the levels of \(B\) cycling fastest:
\[
(\boldsymbol{a b})=\left(a b_{11}, a b_{12}, \ldots a b_{1 n}, a b_{21}, a b_{22}, \ldots a b_{2 n}, \ldots, a b_{m 1}, a b_{m 2}, \ldots a b_{m n}\right)^{\top}
\]

Now consider the variance model for the term A.B. If we specify our variance model generically as
vmodel1(A).vmodel2(B)
where vmodel1 is a variance model function with variance matrix \(\boldsymbol{A}=\left[A_{i j}\right]\) and vmodel2 is a variance model function with variance matrix \(\boldsymbol{B}=\left[B_{k l}\right]\), then the G structure for this term is defined by
\[
\begin{equation*}
\operatorname{cov}\left(a b_{i k}, a b_{j l}\right)=A_{i j} \times B_{k l} . \tag{2.9}
\end{equation*}
\]

This means that the covariance between two effects \(a b_{i k}\) and \(a b_{j l}\) in (\(\boldsymbol{a b} \boldsymbol{b}\)) is constructed as the product of the covariance between \(a_{i}\) and \(a_{j}\) in model \(\boldsymbol{A}\) i.e. its \((i, j)^{t h}\) element \(A_{i j}\), and the covariance between \(b_{k}\) and \(b_{l}\) in model \(\boldsymbol{B}\) i.e. its \((k, l)^{t h}\) element \(B_{k l}\).

Example 2.3 A simple direct product structure
If A has 3 levels and B has 2 levels, then the term A.B would have the 6 levels:
\[
(\mathbf{a b})=\left(a b_{11}, a b_{12}, a b_{21}, a b_{22}, a b_{31}, a b_{32}\right)^{\top} .
\]

Using magenta and blue to highlight terms associated with A and B respectively in cov \(\left(a b_{21}, a b_{32}\right)\), if
\[
\begin{gathered}
\operatorname{var}(\mathrm{A})=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
\end{gathered} \quad \text { and } \operatorname{var}(\mathrm{B})=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \text { then } \quad\left(\operatorname{cov}\left(a b_{21}, a b_{32}\right)=A_{23} \times B_{12} .\right.
\]

\subsection*{2.1 The general linear mixed model}

\subsection*{2.1.10 Direct product structures}

Mathematically, the result (2.9) is known as a direct product structure and is written in full as
\[
\begin{aligned}
\operatorname{var}((\boldsymbol{a b})) & =\boldsymbol{A} \otimes \boldsymbol{B} \\
& =\left[\begin{array}{lll}
A_{11} \boldsymbol{B} & \ldots & A_{1 p} \boldsymbol{B} \\
\vdots & \ddots & \vdots \\
A_{m 1} \boldsymbol{B} & \ddots & A_{m p} \boldsymbol{B}
\end{array}\right]
\end{aligned}
\]

Structures associated with direct product construction are known as separable variance structures and we call the assumption that a separable variance structure is plausible the assumption of separability.

\subsection*{2.1.11 Direct products in R structures}

Separable structures occur naturally in many practical situations. Consider a vector of common errors associated with an experiment. The usual least squares assumption (and the default in ASReml) is that these are independently and identically distributed (IID). However, if \(\boldsymbol{e}\) was from a field experiment laid out in a rectangular array of \(r\) rows by \(c\) columns, we could arrange the residuals as a matrix and might consider that they were autocorrelated within rows and columns. Writing the residuals as a vector in field order, that is, by sorting the residuals rows within columns (plots within blocks) the variance of the residuals might then be
\[
\sigma_{e}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)
\]
where \(\boldsymbol{\Sigma}_{c}\left(\rho_{c}\right)\) and \(\boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\) are correlation matrices for the row model (order \(r\), autocorrelation parameter \(\rho_{r}\)) and column model (order \(c\), autocorrelation parameter \(\rho_{c}\)) respectively. More specifically, a two-dimensional separable autoregressive spatial structure (AR1 \(\otimes A R 1\)) is sometimes assumed for the common errors in a field trial analysis (see Gogel (1997) and Cullis et al. (1998) for examples). In this case
\[
\boldsymbol{\Sigma}_{r}=\left[\begin{array}{lllll}
1 & & & & \\
\rho_{r} & 1 & & & \\
\rho_{r}^{2} & \rho_{r} & 1 & & \\
\vdots & \vdots & \vdots & \ddots & \\
\rho_{r}^{r-1} & \rho_{r}^{r-2} & \rho_{r}^{r-3} & \ldots & 1
\end{array}\right] \text { and } \quad \boldsymbol{\Sigma}_{c}=\left[\begin{array}{lllll}
1 & & & & \\
\rho_{c} & 1 & & & \\
\rho_{c}^{2} & \rho_{c} & 1 & & \\
\vdots & \vdots & \vdots & \ddots & \\
\rho_{c}^{c-1} & \rho_{c}^{c-2} & \rho_{c}^{c-3} & \ldots & 1
\end{array}\right] .
\]

Alternatively, the residuals might relate to a multivariate analysis with \(n_{t}\) traits and \(n\) units and be ordered traits within units. In this case an appropriate variance structure might be
\[
\boldsymbol{I}_{n} \otimes \boldsymbol{\Sigma}
\]
where \(\boldsymbol{\Sigma}^{\left(n_{t} \times n_{t}\right)}\) is a general or unstructured variance matrix. See Chapter 7 for details on specifying separable R structures in ASReml.

\subsection*{2.1 The general linear mixed model}

\subsection*{2.1.12 Direct products in G structures}

Likewise, the random model terms in \(\boldsymbol{u}\) may have a direct product variance structure. For example, for a field trial with \(s\) sites, \(g\) varieties and the effects ordered varieties within sites, the random model term site.variety may have the variance structure
\[
\boldsymbol{\Sigma} \otimes \boldsymbol{I}_{g}
\]
where \(\boldsymbol{\Sigma}\) is the variance matrix for sites. This would imply that the varieties are independent random effects within each site, have different variances at each site, and are correlated across sites. Important Whenever a random term is formed as the interaction of two factors you should consider whether the IID assumption is sufficient or if a direct product structure might be more appropriate. See Chapter 7 for details on specifying separable \(G\) structures in ASReml.

\subsection*{2.1.13 Range of variance models for \(R\) and \(G\) structures}

A range of models are available for the components of both R and G structures. They include correlation (\(C\)) models (that is, where the diagonals are 1), or covariance (\(V\)) models and are discussed in detail in Chapter 7. Among the range of correlation models are:
- identity (that is, independent and identically distributed with variance 1)
- autoregressive (order 1 or 2)
- moving average (order 1 or 2)
- \(\operatorname{ARMA}(1,1)\)
- uniform
- banded
- general correlation.

Among the range of covariance models are:
- scaled identity (that is, independent and identically distributed with homogenous variances)
- diagonal (that is, independent with heterogeneous variances)
- antedependence

\subsection*{2.2 Estimation}
- unstructured
- factor analytic.

There is also the facility to define models based on relationship matrices, including additive relationship matrices generated by pedigrees and using user specified variance matrices.

\subsection*{2.1.14 Combining variance models in \(R\) and \(G\) structures}

The combination of variance models in separable \(G\) and \(R\) structures is a difficult and important concept. This is discussed in detail in Chapter 7.

\subsection*{2.2 Estimation}

Consider the sigma parameterization of Section 2.1.1. Estimation involves two processes that are closely linked. They are performed within the 'engine' of ASReml. One process involves estimation of \(\boldsymbol{\tau}\) and prediction of \(\boldsymbol{u}\) (although the latter may not always be of interest) for given \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\). The other process involves estimation of these variance parameters.

\subsection*{2.2.1 Estimation of the variance parameters}

Estimation of the variance parameters is carried out using residual or restricted maximum likelihood (REML), developed by Patterson and Thompson (1971). An historical development of the theory can be found in Searle et al. (1992). Note firstly that
\[
\begin{equation*}
\boldsymbol{y} \sim N(\boldsymbol{X} \boldsymbol{\tau}, \boldsymbol{H}) \tag{2.10}
\end{equation*}
\]
where \(\boldsymbol{H}=\boldsymbol{Z} \boldsymbol{G}\left(\boldsymbol{\sigma}_{g}\right) \boldsymbol{Z}^{\top}+\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)\). REML does not use (2.10) for estimation of variance parameters, but rather uses a distribution free of \(\boldsymbol{\tau}\), essentially based on error contrasts or residuals. The derivation given below is presented in Verbyla (1990).

We transform \(\boldsymbol{y}\) using a non-singular matrix \(\boldsymbol{L}=\left[\boldsymbol{L}_{1} \boldsymbol{L}_{2}\right]\) such that
\[
\boldsymbol{L}_{1}^{\top} \boldsymbol{X}=I_{p}, \quad \boldsymbol{L}_{2}^{\top} \boldsymbol{X}=\mathbf{0} .
\]

If \(\boldsymbol{y}_{j}=\boldsymbol{L}_{j}^{\top} \boldsymbol{y}, j=1,2\),
\[
\left[\begin{array}{l}
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{c}
\boldsymbol{\tau} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{lll}
\boldsymbol{L}_{1}^{\top} \boldsymbol{H} \boldsymbol{L}_{1} & \boldsymbol{L}_{1}^{\top} \boldsymbol{H} \boldsymbol{L}_{2} \\
\boldsymbol{L}_{2}^{\top} \boldsymbol{H} \boldsymbol{L}_{1} & \boldsymbol{L}_{2}^{\top} \boldsymbol{H} \boldsymbol{L}_{2}
\end{array}\right]\right) .
\]

The full distribution of \(\boldsymbol{L}^{\top} \boldsymbol{y}\) can be partitioned into a conditional distribution, namely \(\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}\), for estimation of \(\boldsymbol{\tau}\), and a marginal distribution based on \(\boldsymbol{y}_{2}\) for estimation of \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\); the latter is the basis of the residual likelihood.

The estimate of \(\boldsymbol{\tau}\) is found by equating \(\boldsymbol{y}_{1}\) to its conditional expectation, and after some algebra we find,
\[
\hat{\boldsymbol{\tau}}=\left(\boldsymbol{X}^{\top} \boldsymbol{H}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{H}^{-1} \boldsymbol{y}
\]

\subsection*{2.2 Estimation}

Estimation of \(\boldsymbol{\kappa}=\left[\boldsymbol{\sigma}_{g}^{\top} \boldsymbol{\sigma}_{r}^{\top}\right]^{\top}\) is based on the log residual likelihood,
\[
\begin{align*}
\ell_{R} & =-\frac{1}{2}\left(\log \operatorname{det} \boldsymbol{L}_{2}^{\top} \boldsymbol{H}^{-1} \boldsymbol{L}_{2}+\boldsymbol{y}_{2}^{\top}\left(\boldsymbol{L}_{2}^{\top} \boldsymbol{H} L_{2}\right)^{-1} \boldsymbol{y}_{2}\right) \\
& =-\frac{1}{2}\left(\log \operatorname{det} \boldsymbol{X}^{\boldsymbol{\top}} \boldsymbol{H}^{-1} \boldsymbol{X}+\log \operatorname{det} \boldsymbol{H}+\boldsymbol{y}^{\top} \boldsymbol{P} \boldsymbol{y}_{2}\right) \tag{2.11}
\end{align*}
\]
where
\[
\boldsymbol{P}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1} \boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{H}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{H}^{-1}
\]

Note that \(\boldsymbol{y}^{\boldsymbol{\top}} \boldsymbol{P} \boldsymbol{y}=(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\tau}})^{\boldsymbol{\top}} \boldsymbol{H}^{-1}(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\tau}})\). The log-likelihood (2.11) depends on \(\boldsymbol{X}\) and not on the particular non-unique transformation defined by \(\boldsymbol{L}\).

The log residual likelihood (ignoring constants) can be written as
\[
\begin{equation*}
\ell_{R}=-\frac{1}{2}\left(\log \operatorname{det} \boldsymbol{C}+\log \operatorname{det} \boldsymbol{R}_{v}+\log \operatorname{det} \boldsymbol{G}+\boldsymbol{y}^{\top} \boldsymbol{P} \boldsymbol{y}\right) \tag{2.12}
\end{equation*}
\]

We can also write
\[
\boldsymbol{P}=\boldsymbol{R}_{v}^{-1}-\boldsymbol{R}_{v}^{-1} \boldsymbol{W} \boldsymbol{C}^{-1} \boldsymbol{W}^{\top} \boldsymbol{R}_{v}^{-1}
\]
with \(\boldsymbol{W}=\left[\begin{array}{ll}\boldsymbol{X} & \boldsymbol{Z}\end{array}\right]\). Letting \(\boldsymbol{\kappa}=\left[\begin{array}{l}\boldsymbol{\sigma}_{g}^{\top} \boldsymbol{\sigma}_{r}^{\top}\end{array}\right]^{\top}\), the REML estimates of \(\kappa_{i}\) are found by calculating the score
\[
\begin{equation*}
U\left(\kappa_{i}\right)=\partial \ell_{R} / \partial \kappa_{i}=-\frac{1}{2}\left[\operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i}\right)-\boldsymbol{y}^{\top} \boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{y}\right] \tag{2.13}
\end{equation*}
\]
and equating to zero. Note that \(\boldsymbol{H}_{i}=\partial \boldsymbol{H} / \partial \kappa_{i}\).
The elements of the observed information matrix are
\[
\begin{align*}
-\frac{\partial^{2} \ell_{R}}{\partial \kappa_{i} \partial \kappa_{j}}=\frac{1}{2} \operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i j}\right)-\frac{1}{2} & \operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{H}_{j}\right) \\
& +\boldsymbol{y}^{\top} \boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{H}_{j} \boldsymbol{P} \boldsymbol{y}-\frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{P} \boldsymbol{H}_{i j} \boldsymbol{P} \boldsymbol{y} \tag{2.14}
\end{align*}
\]
where \(\boldsymbol{H}_{i j}=\partial^{2} \boldsymbol{H} / \partial \kappa_{i} \partial \kappa_{j}\).
The elements of the expected information matrix are
\[
\begin{equation*}
\mathrm{E}\left(-\frac{\partial^{2} \ell_{R}}{\partial \kappa_{i} \partial \kappa_{j}}\right)=\frac{1}{2} \operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{H}_{j}\right) . \tag{2.15}
\end{equation*}
\]

Given an initial estimate \(\boldsymbol{\kappa}^{(0)}\), an update of \(\boldsymbol{\kappa}, \boldsymbol{\kappa}^{(1)}\) using the Fisher-scoring (FS) algorithm is
\[
\begin{equation*}
\boldsymbol{\kappa}^{(1)}=\boldsymbol{\kappa}^{(0)}+\boldsymbol{I}\left(\boldsymbol{\kappa}^{(0)}, \boldsymbol{\kappa}^{(0)}\right)^{-1} \boldsymbol{U}\left(\boldsymbol{\kappa}^{(0)}\right) \tag{2.16}
\end{equation*}
\]
where \(\boldsymbol{U}\left(\boldsymbol{\kappa}^{(0)}\right)\) is the score vector (2.13) and \(\boldsymbol{I}\left(\boldsymbol{\kappa}^{(\mathbf{0})}, \boldsymbol{\kappa}^{(\mathbf{0})}\right)\) is the expected information matrix (2.15) of \(\boldsymbol{\kappa}\) evaluated at \(\boldsymbol{\kappa}^{(0)}\).

\subsection*{2.2 Estimation}

For large models or large data sets, the evaluation of the trace terms in either (2.14) or (2.15) is either not feasible or is very computer intensive. To overcome this problem ASReml uses the AI algorithm (Gilmour, Thompson and Cullis, 1995). The matrix denoted by \(\mathcal{I}_{A}\) is obtained by averaging (2.14) and (2.15) and approximating \(\boldsymbol{y}^{\top} \boldsymbol{P} \boldsymbol{H}_{i j} \boldsymbol{P} \boldsymbol{y}\) by its expectation, \(\operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i j}\right)\) in those cases when \(\boldsymbol{H}_{i j} \neq 0\). For variance components models (that is those linear with respect to variances in \(\boldsymbol{H}\)), the terms in \(\mathcal{I}_{A}\) are exact averages of those in (2.14) and (2.15). The basic idea is to use \(\mathcal{I}_{A}\left(\kappa_{i}, \kappa_{j}\right)\) in place of the expected information matrix in (2.16) to update \(\boldsymbol{\kappa}\).

The elements of \(\mathcal{I}_{A}\) are
\[
\begin{equation*}
\mathcal{I}_{\mathcal{A}}\left(\kappa_{i}, \kappa_{j}\right)=\frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{H}_{j} \boldsymbol{P} \boldsymbol{y} \tag{2.17}
\end{equation*}
\]

The \(\mathcal{I}_{A}\) matrix is the (scaled) residual sums of squares and products matrix of
\[
\boldsymbol{y}=\left[\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right]
\]
where \(\boldsymbol{y}_{i}\) is the 'working' variate for \(\boldsymbol{\kappa}_{i}\) and is given by
\[
\begin{aligned}
\boldsymbol{y}_{i} & =\boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{y} \\
& =\boldsymbol{H}_{i} \boldsymbol{R}_{v}^{-1} \tilde{\boldsymbol{e}} \\
& =\boldsymbol{R}_{v_{i}} \boldsymbol{R}_{v}^{-1} \tilde{\boldsymbol{e}}, \quad \kappa_{i} \in \boldsymbol{\sigma}_{r} \\
& =\boldsymbol{Z} \boldsymbol{G}_{i} \boldsymbol{G}^{-1} \tilde{\boldsymbol{u}}, \quad \kappa_{i} \in \boldsymbol{\sigma}_{g}
\end{aligned}
\]
where \(\tilde{\boldsymbol{e}}=\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\tau}}-\boldsymbol{Z} \tilde{\boldsymbol{u}}, \hat{\boldsymbol{\tau}}\) and \(\tilde{\boldsymbol{u}}\) are solutions to (2.18). In this form the AI matrix is relatively straightforward to calculate.

The combination of the AI algorithm with sparse matrix methods, in which only non-zero values are stored, gives an efficient algorithm in terms of both computing time and workspace.

\subsection*{2.2.2 Estimation/prediction of the fixed and random effects}

To estimate \(\boldsymbol{\tau}\) and predict \(\boldsymbol{u}\) the objective function
\[
\log f_{\boldsymbol{Y}}\left(\boldsymbol{y} \mid \boldsymbol{u} ; \boldsymbol{\tau}, \boldsymbol{R}_{v}\right)+\log f_{\boldsymbol{U}}(\boldsymbol{u} ; \boldsymbol{G})
\]
is used. This is the log-joint distribution of \((\boldsymbol{Y}, \boldsymbol{u})\).
Differentiating with respect to \(\boldsymbol{\tau}\) and \(\boldsymbol{u}\) leads to the mixed model equations (Henderson et al., 1959, Robinson, 1991) which are given by
\[
\left[\begin{array}{cc}
\boldsymbol{X}^{\top} \boldsymbol{R}_{v}^{-1} \boldsymbol{X} & \boldsymbol{X}^{\top} \boldsymbol{R}_{v}^{-1} \boldsymbol{Z} \tag{2.18}\\
\boldsymbol{Z}^{\top} \boldsymbol{R}_{v}^{-1} \boldsymbol{X} & \boldsymbol{Z}^{\top} \boldsymbol{R}_{v}^{-1} \boldsymbol{Z}+\boldsymbol{G}^{-1}
\end{array}\right]\left[\begin{array}{c}
\hat{\boldsymbol{\tau}} \\
\tilde{\boldsymbol{u}}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{X}^{\top} \boldsymbol{R}_{v}^{-1} \boldsymbol{y} \\
\boldsymbol{Z}^{\top} \boldsymbol{R}_{v}^{-1} \boldsymbol{y}
\end{array}\right]
\]

These can be written as
\[
\boldsymbol{C} \tilde{\boldsymbol{\beta}}=\boldsymbol{W} \boldsymbol{R}_{v}^{-1} \boldsymbol{y}
\]
where \(\boldsymbol{C}=\boldsymbol{W}^{\boldsymbol{\top}} \boldsymbol{R}_{v}^{-1} \boldsymbol{W}+\boldsymbol{G}^{*}, \boldsymbol{\beta}=\left[\begin{array}{ll}\boldsymbol{\tau}^{\boldsymbol{\top}} & \boldsymbol{u}^{\top}\end{array}\right]^{\boldsymbol{\top}}\) and
\[
\boldsymbol{G}^{*}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{G}^{-1}
\end{array}\right]
\]

The solution of (2.18) requires values for \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\). In practice we replace \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\) by their REML estimates \(\hat{\boldsymbol{\sigma}_{g}}\) and \(\hat{\boldsymbol{\sigma}}_{r}\).

Note that \(\boldsymbol{\tau}\) is the best linear unbiased estimator (BLUE) of \(\boldsymbol{\tau}\), while \(\tilde{\boldsymbol{u}}\) is the best linear unbiased predictor (BLUP) of \(\boldsymbol{u}\) for known \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\). We also note that
\[
\tilde{\boldsymbol{\beta}}-\boldsymbol{\beta}=\left[\begin{array}{c}
\hat{\boldsymbol{\tau}}-\boldsymbol{\tau} \\
\tilde{\boldsymbol{u}}-\boldsymbol{u}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right], \boldsymbol{C}^{-1}\right) .
\]

\subsection*{2.2.3 Use of the gamma parameterization}

ASReml uses either the gamma or sigma parameterization for estimation depending on the residual specification. The current default for univariate, single section data-sets is the gamma parameterization. In this case, all scale parameters are estimated as a ratio with respect to the residual variance, \(\sigma_{e}^{2}\), and any parameters that measure only correlation are unchanged. See Chapter 7 for more detail.

\subsection*{2.3 What are BLUPs?}

Consider a balanced one-way classification. For data records ordered \(r\) repeats within \(b\) treatments regarded as random effects, the linear mixed model is \(\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\tau}+\boldsymbol{Z} \boldsymbol{u}+\boldsymbol{e}\) where \(\boldsymbol{X}=\mathbf{1}_{b} \otimes \mathbf{1}_{r}\) is the design matrix for \(\boldsymbol{\tau}\) (the overall mean), \(\boldsymbol{Z}=\boldsymbol{I}_{b} \otimes \mathbf{1}_{r}\) is the design matrix for the \(b\) (random) treatment effects \(u_{i}\) and \(\boldsymbol{e}\) is the error vector. Assuming that the treatment effects are random implies that \(\boldsymbol{u} \sim N\left(\boldsymbol{A} \boldsymbol{\psi}, \sigma_{b}^{2} \boldsymbol{I}_{b}\right)\), for some design matrix \(\boldsymbol{A}\) and parameter vector \(\boldsymbol{\psi}\). It can be shown that
\[
\begin{equation*}
\tilde{\boldsymbol{u}}=\frac{r \sigma_{b}^{2}}{r \sigma_{b}^{2}+\sigma^{2}}(\overline{\boldsymbol{y}}-\mathbf{1} \bar{y} . .)+\frac{\sigma^{2}}{r \sigma_{b}^{2}+\sigma^{2}} \boldsymbol{A} \boldsymbol{\psi} \tag{2.19}
\end{equation*}
\]
where \(\overline{\boldsymbol{y}}\) is the vector of treatment means, \(\bar{y} .\). is the grand mean. The differences of the treatment means and the grand mean are the estimates of treatment effects if treatment effects are fixed. The BLUP is therefore a weighted mean of the data based estimate and the 'prior' mean \(\boldsymbol{A} \boldsymbol{\psi}\). If \(\boldsymbol{\psi}=\mathbf{0}\), the BLUP in (2.19) becomes
\[
\begin{equation*}
\tilde{\boldsymbol{u}}=\frac{r \sigma_{b}^{2}}{r \sigma_{b}^{2}+\sigma^{2}}(\overline{\boldsymbol{y}}-\mathbf{1} \bar{y} . .) \tag{2.20}
\end{equation*}
\]
and the BLUP is a so-called shrinkage estimate. As \(r \sigma_{b}^{2}\) becomes large relative to \(\sigma^{2}\), the BLUP tends to the fixed effect solution, while for small \(r \sigma_{b}^{2}\) relative to \(\sigma^{2}\) the BLUP tends towards zero, the assumed initial mean. Thus (2.20) represents a weighted mean which involves the prior assumption that the \(u_{i}\) have zero mean.

\subsection*{2.4 Inference: Random effects}

Note also that the BLUPs in this simple case are constrained to sum to zero. This is essentially because the unit vector defining \(\boldsymbol{X}\) can be found by summing the columns of the \(\boldsymbol{Z}\) matrix. This linear dependence of the matrices translates to dependence of the BLUPs and hence constraints. This aspect occurs whenever the column space of \(\boldsymbol{X}\) is contained in the column space of \(\boldsymbol{Z}\). The dependence is slightly more complex with correlated random effects.

\subsection*{2.4 Inference: Random effects}

\subsection*{2.4.1 Tests of hypotheses: variance parameters}

Inference concerning variance parameters of a linear mixed effects model usually relies on approximate distributions for the (RE)ML estimates derived from asymptotic results.

It can be shown that the approximate variance matrix for the REML estimates is given by the inverse of the expected information matrix (Cox and Hinkley, 1974, section 4.8). Since this matrix is not available in ASReml we replace the expected information matrix by the Al matrix. Furthermore the REML estimates are consistent and asymptotically normal, though in small samples this approximation appears to be unreliable (see later).

A general method for comparing the fit of nested models fitted by REML is the REML likelihood ratio test, or REMLRT. The REMLRT is only valid if the fixed effects are the same for both models. In ASReml this requires not only the same fixed effects model, but also the same parameterisation.

If \(\ell_{R 2}\) is the REML log-likelihood of the more general model and \(\ell_{R 1}\) is the REML log-likelihood of the restricted model (that is, the REML log-likelihood under the null hypothesis), then the REMLRT is given by
\[
\begin{equation*}
D=2 \log \left(\ell_{R 2} / \ell_{R 1}\right)=2\left[\log \left(\ell_{R 2}\right)-\log \left(\ell_{R 1}\right)\right] \tag{2.21}
\end{equation*}
\]
which is strictly positive. If \(r_{i}\) is the number of parameters estimated in model \(i\), then the asymptotic distribution of the REMLRT, under the restricted model is \(\chi_{r_{2}-r_{1}}^{2}\).

The REMLRT is implicitly two-sided, and must be adjusted when the test involves an hypothesis with the parameter on the boundary of the parameter space. It can be shown that for a single variance component, the theoretical asymptotic distribution of the REMLRT is a mixture of \(\chi^{2}\) variates, where the mixing probabilities are 0.5 , one with 0 degrees of freedom (spike at 0) and the other with 1 degree of freedom. The approximate P -value for the REMLRT statistic (D), is \(0.5\left(1-\operatorname{Pr}\left(\chi_{1}^{2} \leq d\right)\right)\) where \(d\) is the observed value of \(D\). This has a \(5 \%\) critical value of 2.71 in contrast to the 3.84 critical value for a \(\chi^{2}\) variate with 1 degree of freedom. The distribution of the REMLRT for the test that \(k\) variance components are zero, or tests involved in random regressions, which involve both variance and covariance components, involves a mixture of \(\chi^{2}\) variates from 0 to \(k\) degrees of freedom. See Self and Liang (1987) for details.

Tests concerning variance components in generally balanced designs, such as the balanced
one-way classification, can be derived from the usual analysis of variance. It can be shown that the REMLRT for a variance component being zero is a monotone function of the F statistic for the associated term.

To compare two (or more) non-nested models we can evaluate the Akaike Information Criteria (AIC) or the Bayesian Information Criteria (BIC) for each model. These are given by
\[
\begin{align*}
\mathrm{AIC} & =-2 \ell_{R i}+2 t_{i} \\
\mathrm{BIC} & =-2 \ell_{R i}+t_{i} \log \nu \tag{2.22}
\end{align*}
\]
where \(t_{i}\) is the number of variance parameters in model \(i\) and \(\nu=n-p\) is the residual degrees of freedom. AIC and BIC are calculated for each model and the model with the smallest value is chosen as the preferred model.

\subsection*{2.4.2 Diagnostics}

In this section we will briefly review some of the diagnostics that have been implemented in ASReml for examining the adequacy of the assumed variance matrix for either \(R\) or \(G\) structures, or for examining the distributional assumptions regarding \(\boldsymbol{e}\) or \(\boldsymbol{u}\). Firstly we note that the BLUP of the residual vector is given by
\[
\begin{align*}
\tilde{\boldsymbol{e}} & =\boldsymbol{y}-\boldsymbol{W} \tilde{\boldsymbol{\beta}} \\
& =\boldsymbol{R}_{v} \boldsymbol{P} \boldsymbol{y} \tag{2.23}
\end{align*}
\]

It follows that
\[
\begin{aligned}
\mathrm{E}(\tilde{\boldsymbol{e}}) & =\mathbf{0} \\
\operatorname{var}(\tilde{\boldsymbol{e}}) & =\boldsymbol{R}_{v}-\boldsymbol{W} \boldsymbol{C}^{-1} \boldsymbol{W}^{\top}
\end{aligned}
\]

The matrix \(\boldsymbol{W} \boldsymbol{C}^{-1} \boldsymbol{W}^{\boldsymbol{\top}}\) (under the sigma parameterization) is the so-called 'extended hat' matrix. ASReml includes the \(\sigma^{2}\) in the hat matrix under the gamma parameterization. It is the linear mixed effects model analogue of \(\sigma^{2} \boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}\) for ordinary linear models. The diagonal elements are returned in the fourth field of the. yht file.

The ! OUTLIER qualifier invokes a partial implementation of research by Alison Smith, Ari Verbyla and Brian Cullis. With this qualifier, ASReml writes
- \(\boldsymbol{G}^{-1} \boldsymbol{u}\) and \(\boldsymbol{G}^{-1} \boldsymbol{u} / \operatorname{diag} \sqrt{\boldsymbol{G}^{-1}-\boldsymbol{G}^{-1} \boldsymbol{C}^{Z Z} \boldsymbol{G}^{-1}}\) to the .sln file,
- \(\boldsymbol{R}_{v}^{-1} \boldsymbol{e}\) and \(\boldsymbol{R}_{v}^{-1} \boldsymbol{e} / \operatorname{diag} \sqrt{\boldsymbol{R}_{v}^{-1}-\boldsymbol{R}_{v}^{-1} \boldsymbol{W} \boldsymbol{C}^{-1} \boldsymbol{W}^{\top} \boldsymbol{R}_{v}^{-1}}\) to the . yht file,
- and copies lines where the last ratio exceeds 3 in magnitude to the .res file
- and reports the number of such lines to the .asr file.
- It has not been validated for multivariate models or XFA models with zero \(\Psi\) s.

The variogram has been suggested as a useful diagnostic for assisting with the identification of appropriate variance models for spatial data (Cressie, 1991). Gilmour et al. (1997) demonstrate its usefulness for the identification of the sources of variation in the analysis of field experiments. If the elements of the data vector (and hence the residual vector) are indexed by a vector of spatial coordinates, \(s_{i}, i=1, \ldots, n\), then the ordinates of the sample variogram are given by
\[
v_{i j}=\frac{1}{2}\left[\tilde{e}_{i}\left(\boldsymbol{s}_{i}\right)-\tilde{e}_{j}\left(\boldsymbol{s}_{j}\right)\right]^{2}, \quad i, j=1, \ldots, n ; \quad i \neq j
\]

The sample variogram reported by ASReml has two forms depending on whether the spatial coordinates represent a complete rectangular lattice (as typical of a field trial) or not. In the lattice case, the sample variogram is calculated from the triple \(\left(l_{i j 1}, l_{i j 2}, v_{i j}\right)\) where \(l_{i j 1}=\) \(s_{i 1}-s_{j 1}\) and \(l_{i j 2}=s_{i 2}-s_{j 2}\) are the displacements. As there will be many \(v_{i j}\) with the same displacements, ASReml calculates the means for each displacement pair \(l_{i j 1}, l_{i j 2}\) either ignoring the signs (default) or separately for same sign and opposite sign (!TWOWAY), after grouping the larger displacements: \(9-10,11-14,15-20, \ldots\). The result is displayed as a perspective plot (see page 236) of the one or two surfaces indexed by absolute displacement group. In this case, the two directions may be on different scales.

Otherwise ASReml forms a variogram based on polar coordinates. It calculates the distance between points \(d_{i j}=\sqrt{l_{i j 1}^{2}+l_{i j 2}^{2}}\) and an angle \(\theta_{i j}\left(-180<\theta_{i j}<180\right)\) subtended by the line from \((0,0)\) to \(\left(l_{i j 1}, l_{i j 2}\right)\) with the x-axis. The angle can be calculated as \(\theta_{i j}=\tan ^{-1}\left(l_{i j 1} / l_{i j 2}\right)\) choosing \(\left(0<\theta_{i j}<180\right)\) if \(l_{i j 2}>0\) and \(\left(-180<\theta_{i j}<0\right)\) if \(l_{i j 2}<0\). Note that the variogram has angular symmetry in that \(v_{i j}=v_{j i}, d_{i j}=d_{j i}\) and \(\left|\theta_{i j}-\theta_{j i}\right|=180\). The variogram presented averages the \(v_{i j}\) within 12 distance classes and 4,6 or 8 sectors (selected using a ! VGSECTORS qualifier) centred on an angle of \((i-1) * 180 / s \quad(i=1, \ldots s)\). A figure is produced which reports the trends in \(\bar{v}_{i j}\) with increasing distance for each sector.

ASReml also computes the variogram from predictors of random effects which appear to have a variance structures defined in terms of distance. The variogram details are reported in the .res file.

\subsection*{2.5 Inference: Fixed effects}

\subsection*{2.5.1 Introduction}

Inference for fixed effects in linear mixed models introduces some difficulties. In general, the methods used to construct \(F\)-tests in analysis of variance and regression cannot be used for the diversity of applications of the general linear mixed model available in ASReml. One approach would be to use likelihood ratio methods (see Welham and Thompson, 1997) although their approach is not easily implemented.

Wald-type test procedures are generally favoured for conducting tests concerning \(\boldsymbol{\tau}\). The traditional Wald statistic to test the hypothesis \(H_{0}: \boldsymbol{L} \boldsymbol{\tau}=\boldsymbol{l}\) for given \(\boldsymbol{L}, r \times p\), and \(\boldsymbol{l}, r \times 1\),
is given by
\[
\begin{equation*}
\mathcal{W}=(\boldsymbol{L} \hat{\boldsymbol{\tau}}-\boldsymbol{l})^{\top}\left\{\boldsymbol{L}\left(\boldsymbol{X}^{\top} \boldsymbol{H}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{\top}\right\}^{-1}(\boldsymbol{L} \hat{\boldsymbol{\tau}}-\boldsymbol{l}) \tag{2.24}
\end{equation*}
\]
and asymptotically, this statistic has a chi-square distribution on \(r\) degrees of freedom. These are marginal tests, so that there is an adjustment for all other terms in the fixed part of the model. It is also anti-conservative if \(p\)-values are constructed because it assumes the variance parameters are known.

The small sample behaviour of such statistics has been considered by Kenward and Roger (1997) in some detail. They presented a scaled Wald statistic, together with an \(F\)-approximation to its sampling distribution which they showed performed well in a range (though limited in terms of the range of variance models available in ASReml) of settings.

In the following we describe the facilities now available in ASReml for conducting inference concerning terms which are the in dense fixed effects model component of the general linear mixed model. These facilities are not available for any terms in the sparse model. These include facilities for computing two types of Wald F statistics and partial implementation of the Kenward and Roger adjustments.

\subsection*{2.5.2 Incremental and conditional Wald F Statistics}

The basic tool for inference is the Wald statistic defined in equation 2.17. ASReml produces a test of fixed effects, that reduces to an F statistic in special cases, by dividing the Wald statistic, constructed with \(\boldsymbol{l}=0\), by \(r\), the numerator degrees of freedom. In this form it is possible to perform an approximate \(F\) test if we can deduce the denominator degrees of freedom. However, there are several ways \(\boldsymbol{L}\) can be defined to construct a test for a particular model term, two of which are available in ASReml. These Wald F statistics are labelled F-inc (for incremental) and F-con (for conditional) respectively. For balanced designs, these Wald F statistics are numerically identical to the F statistics obtained from the standard analysis of variance.

The first method for computing Wald statistics (for each term) is the so-called "incremental" form. For this method, Wald statistics are computed from an incremental sum of squares in the spirit of the approach used in classical regression analysis (see Searle, 1971). For example if we consider a very simple model with terms relating to the main effects of two qualitative factors A and B, given symbolically by
\[
y \sim 1+A+B
\]
where the 1 represents the constant term \((\mu)\), then the incremental sums of squares for this model can be written as the sequence
\[
\begin{aligned}
R(1) & \\
R(\mathrm{~A} \mid 1) & =R(1, \mathrm{~A})-R(1) \\
R(\mathrm{~B} \mid 1, \mathrm{~A}) & =R(1, \mathrm{~A}, \mathrm{~B})-R(1, \mathrm{~A})
\end{aligned}
\]
where the \(R(\cdot)\) operator denotes the residual sums of squares due to a model containing its argument and \(R(\cdot \mid \cdot)\) denotes the difference between the residual sums of squares for any pair
of (nested) models. Thus \(R(\mathrm{~B} \mid 1, \mathrm{~A})\) represents the difference between the reduction in sums of squares between the so-called maximal "model"
\[
y \sim 1+A+B
\]
and
\[
\mathrm{y} \sim 1+\mathrm{A}
\]

Implicit in these calculations is that
- we only compute Wald statistics for estimable functions (Searle, 1971, page 408),
- all variance parameters are held fixed at the current REML estimates from the maximal model

In this example, it is clear that the incremental Wald statistics may not produce the desired test for the main effect of A, as in many cases we would like to produce a Wald statistic for A based on
\[
R(\mathrm{~A} \mid 1, \mathrm{~B})=R(1, \mathrm{~A}, \mathrm{~B})-R(1, \mathrm{~B})
\]

The issue is further complicated when we invoke "marginality" considerations. The issue of marginality between terms in a linear (mixed) model has been discussed in much detail by Nelder (1977). In this paper Nelder defines marginality for terms in a factorial linear model with qualitative factors, but later Nelder (1994) extended this concept to functional marginality for terms involving quantitative covariates and for mixed terms which involve an interaction between quantitative covariates and qualitative factors. Referring to our simple illustrative example above, with a full factorial linear model given symbolically by
\[
\mathrm{y} \sim 1+\mathrm{A}+\mathrm{B}+\mathrm{A} \cdot \mathrm{~B}
\]
then \(A\) and \(B\) are said to be marginal to \(A \cdot B\), and 1 is marginal to \(A\) and \(B\). In a three way factorial model given by
\[
\mathrm{y} \sim 1+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{A} \cdot \mathrm{~B}+\mathrm{A} \cdot \mathrm{C}+\mathrm{B} \cdot \mathrm{C}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}
\]
the terms A, B, C, A.B, A.C and B.C are marginal to A.B.C. Nelder \((1977,1994)\) argues that meaningful and interesting tests for terms in such models can only be conducted for those tests which respect marginality relations. This philosophy underpins the following description of the second Wald statistic available in ASReml, the so-called "conditional" Wald statistic. This method is invoked by placing ! FCON on the datafile line. ASReml attempts to construct conditional Wald statistics for each term in the fixed dense linear model so that marginality relations are respected. As a simple example, for the three way factorial model the conditional Wald statistics would be computed as
\begin{tabular}{|c|c|c|c|c|c|}
\hline Term & \multicolumn{3}{|r|}{Sums of Squares} & & M code \\
\hline 1 & & & \(R(1)\) & & \\
\hline A & & & 1,B,C,B.C) & \(=R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{B} . \mathrm{C})-R(1, \mathrm{~B}, \mathrm{C}, \mathrm{B} . \mathrm{C})\) & A \\
\hline B & & \(R(\mathrm{~B}\) & 1,A,C,A.C) & \(=R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} . \mathrm{C})-R(1, \mathrm{~A}, \mathrm{C}, \mathrm{A} . \mathrm{C})\) & A \\
\hline C & & \(R(\mathrm{C}\) & 1,A,B,A.B) & \(=R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} . \mathrm{B})-R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{~A} . \mathrm{B})\) & A \\
\hline A.B & \(R(\mathrm{~A} . \mathrm{B}\) & 1,A,B & C,A.C,B.C) & \(=R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} \cdot \mathrm{B}, \mathrm{A} \cdot \mathrm{C}, \mathrm{B} . \mathrm{C})-R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} . \mathrm{C}, \mathrm{B} . \mathrm{C})\) & B \\
\hline A.C & \(R\) (A.C & 1,A,B & C,A.B,B.C) & \(=R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} \cdot \mathrm{B}, \mathrm{A} . \mathrm{C}, \mathrm{B} . \mathrm{C})-R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} \cdot \mathrm{B}, \mathrm{B} . \mathrm{C})\) & B \\
\hline B. \(C\) & \(R\) (B.C & 1,A,B & C,A.B,A.C) & \(=R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} \cdot \mathrm{B}, \mathrm{A} . \mathrm{C}, \mathrm{B} . \mathrm{C})-R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} \cdot \mathrm{B}, \mathrm{A} . \mathrm{C})\) & B \\
\hline \multirow[t]{2}{*}{A.B.C} & \multicolumn{3}{|l|}{\(R(\mathrm{~A} . \mathrm{B} . \mathrm{C} \mid 1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} \cdot \mathrm{B}, \mathrm{A} . \mathrm{C}, \mathrm{B} . \mathrm{C})\)} & \(=R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A} \cdot \mathrm{B}, \mathrm{A} \cdot \mathrm{C}, \mathrm{B} \cdot \mathrm{C}, \mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C})-\) & \\
\hline & & & & \(R(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{A} . \mathrm{C}, \mathrm{B} . \mathrm{C})\) & C \\
\hline
\end{tabular}

Of these the conditional Wald statistic for the 1, B.C and A.B.C terms would be the same as the incremental Wald statistics produced using the linear model
\[
\mathrm{y} \sim 1+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{A} \cdot \mathrm{~B}+\mathrm{A} \cdot \mathrm{C}+\mathrm{B} \cdot \mathrm{C}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}
\]

The preceeding table includes a so-called M (marginality) code reported by ASReml when conditional Wald statistics are presented. All terms with the highest M code letter are tested conditionally on all other terms in the model, i.e. by dropping the term from the maximum model. All terms with the preceeding M code letter, are marginal to at least one term in a higher group, and so forth. For example, in the table, model term A.B has M code B because it is marginal to model term A.B.C and model term \(A\) has \(M\) code \(A\) because it is marginal to A.B, A.C and A.B.C. Model term mu (M code .) is a special case in that its test is conditional on all covariates but no factors. Following is some ASReml output from the .aov file which reports the terms in the conditional statistics.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Model Term M} & \multicolumn{9}{|l|}{Marginality pattern for F-con calculation} \\
\hline & DF & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 mu & 1 & * & . & . & . & . & . & . & . \\
\hline 2 water & 1 & I & * & C & C & . & . & C & . \\
\hline 3 variety & 7 & I & I & * & C & . & C & . & . \\
\hline 4 sow & 2 & I & I & I & * & C & . & . & . \\
\hline 5 water.variety & 7 & I & I & I & I & * & C & C & . \\
\hline 6 water.sow & 2 & I & I & I & I & I & * & C & . \\
\hline 7 variety.sow & 14 & I & I & I & I & I & I & * & \\
\hline 8 water.variety.sow & 14 & I & I & I & I & I & I & I & * \\
\hline
\end{tabular}

F-inc tests the additional variation explained when the term \((*)\) is added to a model consisting of the I terms. F-con tests the additional variation explained when the term \((*)\) is added to a model consisting of the I and C/c terms. Any c terms are ignored in calculating DenDF for F -con using numerical derivatives for computational reasons. The . terms are ignored for both F -inc and F -con tests.

Consider now a nested model which might be represented symbolically by
\[
\mathrm{y} \sim 1+\text { REGION }+ \text { REGION.SITE }
\]

For this model, the incremental and conditional Wald F statistics will be the same. However,
it is not uncommon for this model to be presented to ASReml as
\[
\mathrm{y} \sim 1+\text { REGION }+ \text { SITE }
\]
with SITE identified across REGION rather than within REGION. Then the nested structure is hidden but ASReml will still detect the structure and produce a valid conditional Wald F statistic. This situation will be flagged in the M code field by changing the letter to lower case. Thus, in the nested model, the three \(M\) codes would be ., A and B because REGION.SITE is obviously an interaction dependent on REGION. In the second model, REGION and SITE appear to be independent factors so the initial M codes are ., A and A. However they are not independent because REGION removes additional degrees of freedom from SITE, so the M codes are changed from ., A and A to ., a and A.

When using the conditional Wald F statistic, it is important to know what the "maximal conditional" model (MCM) is for that particular statistic. It is given explicitly in the .aov file. The purpose of the conditional Wald F statistic is to facilitate inference for fixed effects. It is not meant to be prescriptive of the appropriate test nor is the algorithm for determining the MCM foolproof.

The Wald statistics are collectively presented in a summary table in the . asr file. The basic table includes the numerator degrees of freedom \(\left(\nu_{1 i}\right)\) and the incremental Wald F statistic for each term. To this is added the conditional Wald F statistic and the M code if ! FCON is specified. A conditional Wald F statistic is not reported for mu in the . asr but is in the .aov file (adjusted for covariates).

The ! FOWN qualifier (page 78) allows the user to replace any/all of the conditional Wald F statistics with tests of the same terms but adjusted for other model terms as specified by the user; the ! FOWN test is not performed if it implies a change in degrees of freedom from that obtained by the incremental model.

\subsection*{2.5.3 Kenward and Roger adjustments}

In moderately sized analyses, ASReml will also include the denominator degrees of freedom (DenDF, denoted by \(\nu_{2 i}\), Kenward and Roger, 1997) and a probablity value if these can be computed. They will be for the conditional Wald F statistic if it is reported. The !DDF \(i\) (see page 67) qualifier can be used to suppress the DenDF calculation (!DDF -1) or request a particular algorithmic method: !DDF 1 for numerical derivatives, !DDF 2 for algebraic derivatives. The value in the probability column (either P_inc or P_con) is computed from an \(F_{\nu_{1 i}, \nu_{2 i}}\) reference distribution. An approximation is used for computational convenience when calculating the DenDF for Conditional F statistics using numerical derivatives. The DenDF reported then relates to a maximal conditional incremental model (MCIM) which, depending on the model order, may not always coincide with the maximal conditional model (MCM) under which the conditional F statistic is calculated. The MCIM model omits terms fitted after any terms ignored for the conditional test (I after . in marginality pattern). In the example above, MCIM ignores variety.sow when calculating DenDF for the test of water and ignores water.sow when calculating DenDF for the test of variety. When DenDF

\subsection*{2.5 Inference: Fixed effects}
is not available, it is often possible, though anti-conservative to use the residual degrees of freedom for the denominator.

Kenward and Roger (1997) pursued the concept of construction of Wald-type test statistics through an adjusted variance matrix of \(\hat{\boldsymbol{\tau}}\). They argued that it is useful to consider an improved estimator of the variance matrix of \(\hat{\boldsymbol{\tau}}\) which has less bias and accounts for the variability in estimation of the variance parameters. There are two reasons for this. Firstly, the small sample distribution of Wald F statistics is simplified when the adjusted variance matrix is used. Secondly, if measures of precision are required for \(\hat{\boldsymbol{\tau}}\) or effects therein, those obtained from the adjusted variance matrix will generally be preferred. Unfortunately the Wald statistics are currently computed using an unadjusted variance matrix.

\subsection*{2.5.4 Approximate stratum variances}

ASReml reports approximate stratum variances and degrees of freedom for simple variance components models. For the linear mixed-effects model with variance components (setting \(\sigma_{H}^{2}=1\)) where \(\boldsymbol{G}=\oplus_{j=1}^{q} \gamma_{j} \boldsymbol{I}_{b_{j}}\), it is often possible to consider a natural ordering of the variance component parameters including \(\sigma^{2}\). Based on an idea due to Thompson (1980), ASReml computes approximate stratum degrees of freedom and stratum variances by a modified Cholesky diagonalisation of the average information matrix. That is, if \(\boldsymbol{F}\) is the average information matrix for \(\boldsymbol{\sigma}\), let \(\boldsymbol{U}\) be an upper triangular matrix such that \(\boldsymbol{F}=\boldsymbol{U}^{\top} \boldsymbol{U}\). We define
\[
\boldsymbol{U}_{c}=\boldsymbol{D}_{c} \boldsymbol{U}
\]
where \(\boldsymbol{D}_{c}\) is a diagonal matrix whose elements are given by the inverse elements of the last column of \(\boldsymbol{U}\) ie \(d_{c i i}=1 / u_{i r}, i=1, \ldots, r\). The matrix \(\boldsymbol{U}_{c}\) is therefore upper triangular with the elements in the last column equal to one. If the vector \(\boldsymbol{\sigma}\) is ordered in the "natural" way, with \(\sigma^{2}\) being the last element, then we can define the vector of so called "pseudo" stratum variance components by
\[
\boldsymbol{\xi}=\boldsymbol{U}_{c} \boldsymbol{\sigma}
\]

Thence
\[
\operatorname{var}(\boldsymbol{\xi})=\boldsymbol{D}_{c}^{2}
\]

The diagonal elements can be manipulated to produce effective stratum degrees of freedom Thompson (1980) viz
\[
\nu_{i}=2 \xi_{i}^{2} / d_{c i i}^{2}
\]

In this way the closeness to an orthogonal block structure can be assessed.

\section*{3 A guided tour}

\subsection*{3.1 Introduction}

This chapter presents a guided tour of ASReml, from data file preparation and basic aspects of the ASReml command file, to running an ASReml job and interpreting the output files. You are encouraged to read this chapter before moving to the later chapters;
- a real data example is used in this chapter for demonstration, see below,
- the same data are also used in later chapters,
- links to the formal discussion of topics are clearly signposted by margin notes.

This example is of a randomised block analysis of a field trial, and is only one of many forms of analysis that ASReml can perform. It is chosen because it allows an introduction to the main ideas involved in running ASReml. However some aspects of ASReml, in particular, pedigree files (see Chapter 9) and multivariate analysis (see Chapter 8) are only covered in later chapters.

ASReml is essentially a batch program with some optional interactive features. The typical sequence of operations when using ASReml is
- Prepare the data (typically using a spreadsheet or data base program)
- Export that data as an ASCII file (for example export it as a .csv (comma separated values) file from Excel)
- Prepare a job file with filename extension .as.
- Run the job file with ASReml
- Review the various output files
- revise the job and re run it, or

\subsection*{3.2 Nebraska Intrastate Nursery (NIN) field experiment}
- extract pertinent results for your report.

You will need a file editor to create the command file and to view the various output files. On unix systems, vi and emacs are commonly used. Under Windows, there are several suitable program editors available such as ASReml-W and ConText mentioned in Section 1.3.

\subsection*{3.2 Nebraska Intrastate Nursery (NIN) field experiment}

The yield data from an advanced Nebraska Intrastate Nursery (NIN) breeding trial conducted at Alliance in 1988/89 will be used for demonstration, see Stroup et al. (1994) for details. Four replicates of 19 released cultivars, 35 experimental wheat lines and 2 additional triticale lines were laid out in a 22 row by 11 column rectangular array of plots; the varieties were allocated to the plots using a randomised complete block (RCB) design. In field trials, complete replicates are typically allocated to consecutive groups of whole columns or rows. In this trial the replicates were not allocated to groups of whole columns, but rather, overlapped columns. Table 3.1 gives the allocation of varieties to plots in field plan order with replicates 1 and 3 in italics and replicates 2 and 4 in bold.

Table 3.1: Trial layout and allocation of varieties to plots in the NIN field trial
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & column & & & & & \\
\hline row & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1 & - & NE83407 & BUCKSKIN & NE87612 & VONA & NE87512 & NE87408 & CODY & BUCKSKIN & NE87612 & KS831374 \\
\hline 2 & - & CENTURA & NE86527 & NE87613 & NE87463 & NE83407 & NE83407 & NE87612 & NE83406 & BUCKSKIN & NE86482 \\
\hline 3 & - & SCOUT66 & NE86582 & NE87615 & NE86507 & NE87403 & NORKAN & NE87457 & NE87409 & NE85556 & NE85623 \\
\hline 4 & - & COLT & NE86606 & NE87619 & BUCKSKIN & NE87457 & REDLAND & NE84557 & NE87499 & BrULE & NE86527 \\
\hline 5 & - & NE83498 & NE86607 & NE87627 & ROUGHRIDER & NE83406 & KS831374 & NE83T12 & CENTURA & NE86507 & NE87451 \\
\hline 6 & - & NE84557 & ROUGHRIDER & - & NE86527 & COLT & COLT & NE86507 & NE83432 & ROUGHRIDER & NE87409 \\
\hline 7 & - & NE83432 & VONA & CENTURA & SCOUT66 & NE87522 & NE86527 & TAM200 & NE87512 & VONA & GAGE \\
\hline 8 & - & NE85556 & SIOUXLAND & NE85623 & NE86509 & NORKAN & VONA & NE87613 & ROUGHRIDER & NE83404 & NE83407 \\
\hline 9 & - & NE85623 & GAGE & CODY & NE86606 & NE87615 & TAM107 & ARAPAHOE & NE83498 & CODY & NE87615 \\
\hline 10 & - & CENTURAK78 & NE83T12 & NE86582 & NE84557 & NE85556 & CENTURAK78 & SCout66 & - & NE87463 & ARAPAHOE \\
\hline 11 & - & NORKAN & NE86T666 & NE87408 & KS831374 & TAM200 & NE87627 & NE87403 & NE86T666 & NE86582 & CHEYENNE \\
\hline 12 & - & KS831374 & NE87403 & NE87451 & GAGE & LANCOTA & NE86T666 & NE85623 & NE87403 & NE87499 & REDLAND \\
\hline 13 & - & TAM200 & NE87408 & NE83432 & NE87619 & NE86503 & NE87615 & NE86509 & NE87512 & NORKAN & NE83432 \\
\hline 14 N & - & NE86482 & NE87409 & CENTURAK78 & NE87499 & NE86482 & NE86501 & NE85556 & NE87446 & SCOUT66 & NE87619 \\
\hline 15 & - & HOMESTEAD & NE87446 & NE83T12 & CHEYENNE & BRULE & NE87522 & HOMESTEAD & CENTURA & NE87513 & NE83498 \\
\hline 16 & LANCER & LANCOTA & NE87451 & NE87409 & NE86607 & NE87612 & CHEYENNE & NE83404 & NE86503 & NE83T12 & NE87613 \\
\hline 17 & BRULE & NE86501 & NE87457 & NE87513 & NE83498 & NE87613 & SIOUXLAND & NE86503 & NE87408 & CENTURAK78 & NE86501 \\
\hline 18 & REDLAND & NE86503 & NE87463 & NE87627 & NE83404 & NE86T666 & NE87451 & NE86582 & COLT & NE87627 & TAM200 \\
\hline 19 & CODY & NE86507 & NE87499 & ARAPAHOE & NE87446 & - & GAGE & NE87619 & LANCER & NE86606 & NE87522 \\
\hline 20 & ARAPAHOE & NE86509 & NE87512 & LANCER & SIOUXLAND & NE86607 & LANCER & NE87463 & NE83406 & NE87457 & NE84557 \\
\hline 21 & NE83404 & TAM107 & NE87513 & TAM107 & HOMESTEAD & LANCOTA & NE87446 & NE86606 & NE86607 & NE86509 & TAM107 \\
\hline 22 & NE83406 & CHEYENNE & NE87522 & REDLAND & NE86501 & NE87513 & NE86482 & BRULE & SIOUXLAND & LANCOTA & HOMESTEAD \\
\hline
\end{tabular}

\subsection*{3.3 The ASReml data file}

\subsection*{3.3 The ASReml data file}

The standard format of an ASReml data file is to have the data arranged in space, TAB or comma separated columns/fields with a line for each sampling unit. The columns contain covariates, factors, response variates (traits) and weight variables in any convenient order. This is the first 30 lines of the file nin89. asd containing the data for the NIN variety trial. The data are in field order (rows within columns) and an optional heading (first line of the file) has been included to document the file. In this case there are 11 space separated data fields (variety...column) and the complete file has 224 data lines, one for each variety in each replicate.
```

variety id pid raw repl nloc yield lat long row column
LANCER 1 1 1101 585 1 4 29.25 4.3 19.2 16 1
BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1
REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1
CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1
ARAPAHOE 5 1105 661 1 4 33.05 4.3 24 20 1
NE83404 6 1106 605 114 30.25 4.3 25.2 21 1
NE83406 7 1107 704 1 4 35.2 4.3 26.4 22 1
NE83407 8 1108 388 1 4 19.4 8.6 1.2 1 2
CENTURA 9 1109 487 1 4 24.35 8.6 2.4 2 2
SCOUT66 10 1110 511 1 4 25.55 8.6 3.6 3 2
COLT 11 1111 502 1 4 25.1 8.6 4.8 4 2
NE83498 12 1112 492 1 4 24.6 8.6 6 5 2
NE84557 13 1113 509 1 4 25.45 8.6 7.2 6 2
NE83432 14 1114 268 1 4 13.4 8.6 8.4 7 2
NE85556 15 1115 633 1 4 31.65 8.6 9.6 8 2
NE85623 16 1116 513 1 4 25.65 8.6 10.8 9 2
CENTURAK78 17 1117 632 1 4 31.6 8.6 12 10 2
NORKAN 18 1118 446 1 4 22.3 8.6 13.2 11 2
KS831374 19 1119 684 1 4 34.2 8.6 14.4 12 2
\vdots

```

\subsection*{3.3 The ASReml data file}

These data are analysed again in Chapter 7 using spatial methods of analysis, see model 3a in Section 7.5. For spatial analysis using a separable error structure (see Chapter 2) the data file must first be augmented to specify the complete 22 row \(\times 11\) column array of plots. These are the first 20 lines of the augmented data file nin89aug. asd with 242 data rows. Note that ASReml 4 can automatically augment spatial data: see !ROWFACTOR, ! COLUMNFACTOR.
```

variety id pid raw repl nloc yield lat long row column
LANCER 1 NA NA 1 4 NA 4.3 1.2 1 1
LANCER 1 NA NA 1 4 NA 4.3 2.4 2 1
LANCER 1 NA NA 1 4 NA 4.3 3.6 3 1
LANCER 1 NA NA 1 4 NA 4.3 4.8 4 1
LANCER 1 NA NA 1 4 NA 4.3 6 5 1
LANCER 1 NA NA 1 4 NA 4.3 7.2 6 1
LANCER 1 NA NA 1 4 NA 4.3 8.4 7 1
LANCER 1 NA NA 1 4 NA 4.3 9.6 8 1
LANCER 1 NA NA 1 4 NA 4.3 10.8 9 1
LANCER 1 NA NA 1 4 NA 4.3 12 10 1
LANCER 1 NA NA 1 4 NA 4.3 13.2 111 1
LANCER 1 NA NA 1 4 NA 4.3 14.4 12 1
LANCER 1 NA NA 1 4 NA 4.3 15.6 13 1
LANCER 1 NA NA 1 4 NA 4.3 16.8 14 1
LANCER 1 NA NA 1 4 NA 4.3 18 15 1
LANCER 1 NA NA 2 4 NA 17.2 7.2 6 4
LANCER 1 NA NA 3 4 NA 25.8 22.8 19 6
LANCER 1 NA NA 4 4 NA 38.7 12.0 10 9
LANCER 1}11101 585 1 4 29.25 4.3 19.2 16 1
BRULE 2 1102 631 1 4 4 31.55 4.3 20.4 17 1
REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1
CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1
\vdots

```

Note that
- the pid, raw, repl and yield data for the missing plots have all been made NA (one of the three missing value indicators in ASReml, see Section 4.2),
- variety is coded LANCER for all missing plots; one of the variety names must be used but the particular choice is arbitrary.

\subsection*{3.4 The ASReml command file}

\subsection*{3.4 The ASReml command file}

By convention an ASReml command file has a .as extension. The file defines
- a title line to describe the job,
- labels for the data fields in the data file and the name of the data file,
- the linear mixed model and the variance model(s) if required,
- output options including directives for tabulation and prediction.

Below is the ASReml command file for an RCB analysis of the NIN field trial data highlighting the main sections. Note the order of the main sections.
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{r}
\text { title line } \longrightarrow \\
\text { data field definition } \longrightarrow
\end{array}
\] & ```
NIN Alliance trial 1989
 variety !A
 id
 pid
 raw
 repl 4
 nloc
 yield
 lat
 long
 row 22
 column 11
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r idv(repl)
residual idv(units)
predict variety
``` \\
\hline
\end{tabular}

\subsection*{3.4.1 Generating a template}

ASReml can generate a basic command file, a template for you to modify, from the data file if the data file has suitable field (variable) names in the first line. The requirements are
- the data file have file name extension asd, csv, dat or txt;
- there is not a matching command file already existing;
- the first line of the file contains a 'name' for each field;
- the 'name' must begin with a letter; it may contain numbers and the underscore character but not any of the characters +-., :;\$\#\*/^!|\&'"<>=~\{\}[] ();
- the 'name' may be terminated with ! P to indicate a Pedigree factor, ! A to indicate a

\subsection*{3.4 The ASReml command file}
alphanumerically coded factor, ! I to indicated a factor where the numbers are to be treated as labels for the levels, and ! where the numbers are the actual levels.
- If none of the 'names' are indicated as factors using the ! mechanism, ASReml will scan the first few lines of data and try and identify alphanumeric, integer and simple factors.

Always check the template as it is likely some variates have been misclassified as factors.
The template file created by running ASReml on the nin89. asd file looks like
```


!WORKSPACE 100 !RENAME !ARGS // !DOPART \$1

Title: nin89.
\#variety,id,pid,raw,rep,nloc,yield,lat,long,row, column
\#LANCER,1,1101,585,1,4,29.25,4.3,19.2,16,1
\#BRULE,2,1102,631,1,4,31.55,4.3,20.4,17,1
\#REDLAND,3,1103,701,1,4,35.05,4.3,21.6,18,1
\#CODY,4,1104,602,1,4,30.1,4.3,22.8,19,1
variety !A \# CODY
id * \# 4
pid !I \# 1104
raw !I \# 602
rep * \# 1
nloc * \# 4
yield \# 30.1
lat \# 4.3
long \# 22.8
row !I \# 19
column * \# 1

Check/Correct these field definitions.

nin89.asd !SKIP 1
yield ~ mu , \# Specify fixed model
!r \# Specify random model
residual units

```

We need to change the ! I associated with row to * because the row numbers are actually positions, not just labels which could be taken in any order. Note that ASReml displays a data value beside each name to make it easier to confirm the labelling.

\subsection*{3.4 The ASReml command file}

\subsection*{3.4.2 The title line}

The first text (non-blank, non control) line in an ASReml command file is taken as the title for the job and is purely descriptive for future reference.

\subsection*{3.4.3 Reading the data}

The data fields are defined before the data file name is specified. Field definitions must be given for all fields in the data file and in the order in which they appear in the data file. Note that, in previous releases data field definitions had to be indented but in Release 4 this condition has been relaxed and is not required. In this case there are 11 data fields (variety ...column) in nin89.asd, see Section 3.3.

The ! A after variety tells ASReml that the
```

NIN Alliance trial 1989
variety !A
id :

```
```

NIN Alliance trial 1989
variety !A
id
pid
raw
repl 4
nloc
yield
lat
long
row 22
column 11
nin89.asd !skip 1 !

``` first field is an alphanumeric factor and the 4 after repl tells ASReml that the field called repl (the fifth field read) is a numeric factor with 4 levels coded 1:4. Similarly for row and column. The other fields include variates (yield) and various other variables.

\subsection*{3.4.4 The data file line}

The data file name is specified immediately after the last data field definition. Data file qualifiers that relate to data input and output are also placed on this line if they are required. In this example, !skip 1 tells ASReml to ignore (skip) the first line of the data file nin89.asd, the line containing the field labels.

The data file line can contain qualifiers that control other aspects of the analysis. These qualifiers are presented in Section 5.8.

\subsection*{3.4 The ASReml command file}

\subsection*{3.4.5 Tabulation}

The tabulate statements are optional.They provide a simple way of exploring the structure of a data. They should appear immediately before the model line. In this case the 56 simple variety means for yield are formed and written to a .tab output file. See Chapter 10 for a discussion of tabulation.
```

:
column 11
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r idv(repl)
residual idv(units)
predict variety

```
column 11
nin89.asd !skip 1
tabulate yield \(\sim\) variety
yield \(\sim\) mu variety !r idv (repl)
residual idv(units)
predict variety

\subsection*{3.4.6 Specifying the terms in the mixed model}

The linear mixed model is specified as a list of model terms and qualifiers. All elements must be space separated. ASReml accommodates a wide range of analyses. See Section 2.1 for a brief discussion and general algebraic formulation of the linear mixed model. The model specified here for the NIN data is a simple random effects RCB model having fixed va-
```

NIN Alliance trial 1989 variety !A
\vdots
column 11
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r idv(repl)
residual idv(units)
predict variety

``` riety effects and random replicate effects. The reserved word mu fits a constant term (intercept), variety fits a fixed variety effect and repl fits a random replicate effect because the !r qualifier tells ASReml to fit the terms that follow as random effects.

\subsection*{3.4.7 Variance structures}

There are two variance structures to be specified and two variance components to be estimated. The first structure is for the replicate (repl) effects. These effects are IID distributed and idv (repl) denotes this and estimates one variance component associated with these effects. The other is associated with the residual effects, which are again as-
```

NIN Alliance trial }1989\mathrm{ variety !A
\vdots
column 11
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r idv(repl)
residual idv(units)
predict variety

``` specified here by the line
residual idv(units) where residual is the name of the directive that specifies the variance structure for the residuals, and units is the reserved word specifiying a factor with a level for every experimental unit. The default variance structure is always uncorrelated effects with a common variance and so idv (repl) and idv(units) can be reduced to simply repl and units. See Chapter 7 for a lengthy discussion on variance modelling in ASReml.

\subsection*{3.5 Running the job}

\subsection*{3.4.8 Prediction}

Predict statements appear after the model statement. In this case the 56 variety means for yield as predicted from the fitted model would be formed and returned in the .pvs output file. See Chapter 10 for a detailed discussion of prediction in ASReml.
```

NIN Alliance trial }1989\mathrm{ variety !A
\vdots
column 11
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r idv(repl)
residual idv(units)
predict variety

```

\subsection*{3.5 Running the job}

Assuming you have located the nin89. asd file (under Windows it will typically be located in ASRemlPath/Examples; we suggest copying the data file to the users workspace as the Examples folder is sometimes write protected) and created the ASCII command file nin89. as as described in the previous section and in the same folder, you can run the job. ASRemlPath is typically C: \Program Files \(\backslash\) ASReml4 under Windows. Installation details vary with the implementation and are distributed with the program. You could use ASReml-W or ConText to create nin89.as. These programs can then run ASReml directly after they have been configured for ASReml. An ASReml job is also run from a command line or by 'clicking' the . as file in Windows Explorer.

The basic command to run an ASReml job is
ASRemlPath/bin/ASReml basename[.as]
where basename[.as] is the name of the command file. Typically, a system Path is defined which includes ASRemlPath/bin/ so that just the program name ASReml is required at the command prompt. For example, the command to run nin89. as from the command prompt when attached to the appropriate folder is
ASReml nin89.as
However, if the path to ASReml is not specified in your system's Path environment variable, the path must also be given, and the path is required when configuring ASReml-W or Context.

In this guide we assume the command file has a filename extension .as. ASReml also recognises the filename extension .asc as an ASReml command file. When these are used, the extension (.as or .asc) may be omitted from basename. as in the command line if there is no file in the working directory with the name basename. The options and arguments that can be supplied on the command line to modify a job at run time are described in Chapter 11.

\subsection*{3.6 Description of output files}

\subsection*{3.6 Description of output files}

A series of output files are produced with each ASReml run. Nearly all files, all that contain user information, are ASCII files and can be viewed in any ASCII editor including ConText, ASReml-W and NotePad. The primary output from the nin89.as job is written to nin89.asr. This file contains a summary of the data, the iteration sequence, estimates of the variance parameters and an a table of Wald F statistics for testing fixed effects. The estimates of all the fixed and random effects are written to nin89.sln. The residuals, predicted values of the observations and the diagonal elements of the hat matrix (see Chapter 2) are returned in nin89.yht, see Section 14.3. Other key files produced by this job include the .aov, .pvs, .res, .tab, .sln and .yht files, see Section 14.4.

\subsection*{3.6.1 The .asr file}

Below is nin89.asr with pointers to the main sections. The first line gives the version of ASReml used (in square brackets) and the title of the job. The second line gives the build date for the program and indicates whether it is a 32 bit or 64 bit version. The third line gives the date and time that the job was run and reports the size of the workspace. The general announcements box (outlined in asterisks) at the top of the file notifies the user of current release features. The remaining lines report a data summary, the iteration sequence, the estimated variance parameters and a table of Wald F statistics. The final line gives the date and time that the job was completed and a statement about convergence.
```

ASReml 3.1 [01 Jan 2011] NIN alliance trial 1989
 job heading
Build cm [25 Oct 2011] 64 bit
0 4 ~ N o v ~ 2 0 1 1 ~ 2 1 : 1 4 : 2 8 . 4 0 4 ~ 3 2 ~ M b y t e ~ L i n u x ~ (x 6 4) ~ n i n 8 9 ~
Licensed to: Cargo Vale Olives/Univ of Wollongong 31-jul-2012

* Contact support@asreml.co.uk for licensing and support *
** ARG *

```
Folder: /home/gilmoua/W7drive/Users/Public/ASReml/asr3/ug3/Manex4
variety !A
QUALIFIERS: !SKIP 1
Reading nin89.asd FREE FORMAT skipping 1 lines
Univariate analysis of yield
Summary of 224 records retained of 224 read data summary
\begin{tabular}{lrrrrrrr} 
Model term & Size \#miss & \#zero & MinNon0 & Mean & MaxNon0 & StndDevn \\
1 variety & 56 & 0 & 0 & 1 & 28.5000 & 56 & \\
2 id & & 0 & 0 & 1.000 & 28.50 & 56.00 & 16.20 \\
3 pid & & 0 & 0 & 1101. & 2628. & 4156. & 1121. \\
4 raw & & 0 & 0 & 21.00 & 510.5 & 840.0 & 149.0 \\
5 repl & 4 & 0 & 0 & 1 & 2.5000 & 4 & \\
6 nloc & & 0 & 0 & 4.000 & 4.000 & 4.000 & 0.000 \\
7 yield & Variate & 0 & 0 & 1.050 & 25.53 & 42.00 & 7.450
\end{tabular}

\subsection*{3.6 Description of output files}

```

 - - - Results from analysis of yield - - -
 Akaike Information Criterion 912.94 (assuming 2 parameters).
Bayesian Information Criterion 919.19

```
\begin{tabular}{lrccc}
\multicolumn{5}{c}{ Approximate stratum } \\
variance & decomposition \\
Stratum & Degrees-Freedom & Variance & Component & Coefficients \\
idv(repl) & 3.00 & 603.100 & 56.0 & 1.0 \\
Residual & Variance & 165.00 & 49.5824 & 0.0
\end{tabular} 1.0
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model_Term & & & Gamma & Sigma & Sigma/SE & \% & C \\
\hline idv(repl) & IDV_V & 4 & 0.199323 & 9.88291 & \% 1.12 & 0 & parameter \\
\hline idv(units) & & 224 & effects & & & & estimates \\
\hline Residual & SCA_V & 224 & 1.000000 & 49.5824 & 9.08 & 0 & P \\
\hline
\end{tabular}
\begin{tabular}{lrrrl} 
& Wald F statistics & & \\
Source of Variation & NumDF & DenDF & F-inc & P-inc testing \\
12 mu & 1 & 3.0 & 242.05 & \(<.001\) fixed \\
1 variety & 55 & 165.0 & 0.88 & 0.712 effects
\end{tabular}
Notice: The DenDF values are calculated ignoring fixed/boundary/singular
                            variance parameters using algebraic derivatives.
    5 repl 4 effects fitted
Finished: 04 Nov 2011 21:14:29.242 LogL Converged

\subsection*{3.6.2 The . sln file}

The following is an extract from nin89.sln containing the estimated variety effects, intercept and random replicate effects in this order (column 3) with standard errors (column 4). Note that the variety effects are returned in the order of their first appearance in the data file, see replicate 1 in Table 3.1.

\subsection*{3.6 Description of output files}
\begin{tabular}{|c|c|c|c|c|}
\hline Model_Term & Level & & Effect & seEffect \\
\hline variety & LANCER & & 0.000 & 0.000 \\
\hline variety & BRULE & & -2.487 & 4.979 \\
\hline variety & REDLAND & & 1.938 & 4.979 \\
\hline variety & CODY & & -7.350 & 4.979 \\
\hline variety & ARAPAHOE & & 0.8750 & 4.979 \\
\hline variety & NE83404 & & -1.175 & 4.979 \\
\hline variety & NE83406 & & -4.287 & 4.979 \\
\hline variety & NE83407 & & -5.875 & 4.979 \\
\hline variety & CENTURA & & -6.912 & 4.979 \\
\hline variety & SCOUT66 & & -1.037 & 4.979 \\
\hline variety & COLT & & -1.562 & 4.979 \\
\hline variety & NE83498 & & 1.563 & 4.979 \\
\hline variety & NE84557 & & -8.037 & 4.979 \\
\hline variety & NE83432 & & -8.837 & 4.979 \\
\hline variety & NE87615 & & -2.875 & 4.979 \\
\hline variety & NE87619 & & 2.700 & 4.979 \\
\hline variety & NE87627 & & -5.337 & 4.979 \\
\hline mu & & 1 & 28.56 & 3.856 \\
\hline repl & & 1 & 1.880 & 1.755 \\
\hline repl & & 2 & 2.843 & 1.755 \\
\hline repl & & 3 & -0.8713 & 1.755 \\
\hline repl & & 4 & -3.852 & 1.755 \\
\hline
\end{tabular}

\subsection*{3.7 Tabulation, predicted values and functions of the variance components}

\subsection*{3.6.3 The .yht file}

The following is an extract from nin89.yht containing the predicted values of the observations (column 2), the residuals (column 3) and the diagonal elements of the hat matrix. This final column can be used in tests involving the residuals, see Section 2.4 under Diagnostics.
\begin{tabular}{rrrr} 
Record & Yhat & Residual & Hat \\
1 & 30.442 & -1.192 & 13.01 \\
2 & 27.955 & 3.595 & 13.01 \\
3 & 32.380 & 2.670 & 13.01 \\
4 & 23.092 & 7.008 & 13.01 \\
5 & 31.317 & 1.733 & 13.01 \\
6 & 29.267 & 0.9829 & 13.01 \\
7 & 26.155 & 9.045 & 13.01 \\
8 & 24.567 & -5.167 & 13.01 \\
9 & 23.530 & 0.8204 & 13.01 \\
\(\vdots\) & & & \\
& & & 9.877 \\
& 22.673 & 1.052 & 13.01 \\
223 & 24.548 & 3.114 & 13.01 \\
224 & 23.786 & &
\end{tabular}

\subsection*{3.7 Tabulation, predicted values and functions of the variance components}

It may take several runs of ASReml to determine an appropriate model for the data, that is, the fixed and random effects that are important. During this process you may wish to explore the data by simple tabulation. Having identified an appropriate model, you may then wish to form predicted values or functions of the variance components. The facilities in ASReml to form predicted values and functions of the variance components are described in Chapters 10 and 13 respectively. Our example only includes tabulation and prediction.

The statement
tabulate yield \(\sim\) variety
in nin89. as results in nin89.tab as follows:
```

NIN alliance trial 1989 11 Jul 2005 13:55:21

```

Simple tabulation of yield
\begin{tabular}{ll} 
variety & \\
LANCER & 28.56 \\
BRULE & 26.07 \\
REDLAND & 30.50 \\
CODY & 21.21 \\
ARAPAHOE & 29.44 \\
NE83404 & 27.39 \\
NE83406 & 24.28
\end{tabular}

\subsection*{3.7 Tabulation, predicted values and functions of the variance components}
\begin{tabular}{ll} 
NE83407 & 22.69 \\
CENTURA & 21.65 \\
SCOUT66 & 27.52 \\
COLT & 27.00 \\
NE87522 & 25.00 \\
NE87612 & 21.80 \\
NE87613 & 29.40 \\
NE87615 & 25.69 \\
NE87619 & 31.26 \\
NE87627 & 23.23
\end{tabular}

The
predict variety
statement after the model statement in nin89.as results in the nin89.pvs file displayed below (some output omitted) containing the 56 predicted variety means, also in the order in which they first appear in the data file (column 2), together with standard errors (column 3 ). An average standard error of difference among the predicted variety means is displayed immediately after the list of predicted values. As in the .asr file, date, time and trial information are given the title line. The Ecode for each prediction (column 4) is usually E indicating the prediction is of an estimable function. Predictions of non-estimable functions are usually not printed, see Chapter 10.
```

NIN alliance trial 1989
04 Apr 2008 17:00:47
nin89

```

Ecode is E for Estimable, * for Not Estimable

Predicted values of yield
The predictions are obtained by averaging across the hypertable
calculated from model terms constructed solely from factors
in the averaging and classify sets.
The ignored set: repl
Use !AVERAGE to move table factors into the averaging set.
\begin{tabular}{lrr} 
variety & Predicted_Value & Standard_Error Ec \\
LANCER & 28.5625 & 3.8557 E \\
BRULE & 26.0750 & 3.8557 E \\
REDLAND & 30.5000 & 3.8557 \\
E \\
CODY & 21.2125 & 3.8557 E \\
ARAPAHOE & 29.4375 & 3.8557 E \\
NE83404 & 27.3875 & 3.8557 E \\
NE83406 & 24.2750 & 3.8557 E \\
NE83407 & 22.6875 & 3.8557 E
\end{tabular}

\subsection*{3.7 Tabulation, predicted values and functions of the variance components}
\begin{tabular}{lll} 
CENTURA & 21.6500 & 3.8557 E \\
SCOUT66 & 27.5250 & 3.8557 E \\
COLT & 27.0000 & 3.8557 E \\
& & \\
NE87613 & 29.4000 & 3.8557 E \\
NE87615 & 25.6875 & 3.8557 E \\
NE87619 & 31.2625 & 3.8557 E \\
NE87627 & 23.2250 & 3.8557 E \\
SED: Overall Standard Error of Difference & 4.979
\end{tabular}

\section*{4 Data file preparation}

\subsection*{4.1 Introduction}

The first step in an ASReml analysis is to prepare the data file. Data file preparation is discussed in this chapter using the NIN example of Chapter 3 for demonstration. The first 25 lines of the data file are as follows:
```

variety id pid raw repl nloc yield lat long row column
BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1
REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1
CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1
ARAPAHOE 5 1105 661 1 4 33.05 4.3 24 20 1
NE83404 6 1106 605 1 4 30.25 4.3 25.2 21 1
NE83406 7}1107704144135.2 4.3 26.4 22 1
NE83407 8 1108 388 1 4 19.4 8.6 1.2 1 2
CENTURA 9 1109 487 1 4 24.35 8.6 2.4 2 2
SCOUT66 10 1110 511 1 4 25.55 8.6 3.6 3 2
COLT 11 1111 502 1 4 25.1 8.6 4.8 4 2
NE83498 12 1112 492 1 4 24.6 8.6 6 5 2
NE84557 13 1113 509 1 4 25.45 8.6 7.2 6 2
NE83432 14 1114 268 1 4 13.4 8.6 8.4 7 2
NE85556 15 1115 633 1 4 31.65 8.6 9.6 8 2
NE85623 16 1116 513 1 4 25.65 8.6 10.8 9 2
CENTURK78 17 1117 632 1 4 31.6 8.6 12 10 2
NORKAN 18 1118 446 1 4 22.3 8.6 13.2 11 2
KS831374 19 1119 684 1 4 34.2 8.6 14.4 12 2
TAM200 20 1120 422 1 4 21.1 8.6 15.6 13 2
NE86482 21 1121 560 1 4 28 8.6 16.8 14 2
HOMESTEAD 22 1122 566 1 4 28.3 8.6 18 15 2
LANCOTA 23 1123 514 1 4 25.7 8.6 19.2 16 2
NE86501 24 1124 635 1 4 31.75 8.6 20.4 17 2
NE86503 25 1125 840 1 4 42 8.6 21.6 18 2

```

\subsection*{4.2 The data file}

The standard format of an ASReml data file is to have the data arranged in columns/fields with a single line for each sampling unit. The columns contain variates and covariates

\subsection*{4.2 The data file}
(numeric), factors (alphanumeric), traits (response variables) and weight variables in any order that is convenient to the user. The data file may be free format, fixed format or a binary file.

\subsection*{4.2.1 Free format data files}

The data are read free format (SPACE, COMmA or TAB separated) unless the file name has extension . bin for real binary, or . dbl for double precision binary (see below). Important points to note are as follows:
- files prepared in Excel must be saved to comma or tab-delimited form.
- blank lines are ignored,
- column headings, field labels or comments may be present at the top of the file (See Generating a template on page 29) provided that the !skip qualifier (Table 5.2) is used to skip over them,
- NA, * and . are treated as coding for missing values in free format data files;
- if missing values are coded with a unique data value (for example, 0 or -9), use the transformation ! M value to flag them as missing or ! DV value to drop the data record containing them (see Table 5.1),
- comma delimited files whose file name ends in .csv or for which the ! CSV qualifier is set recognise empty fields as missing values,
- a line beginning with a comma implies a preceding missing value,
- consecutive commas imply a missing value,
- a line ending with a comma implies a trailing missing value,
- if the filename does not end in . Csv and the ! CSV qualifier is not set, commas are treated as white space,
- tab delimited files recognise empty fields as missing values
- characters following \# on a line are ignored so this character may not be used except to flag trailing comments on the ends of lines, or to comment out data records, unless !SPECIALCHAR is specified, see Section 5.4.2,
- adjacent lines can be concatenated and written on one line using //. For example,
line_1
line_2
\(\vdots\)
line_n

\subsection*{4.2 The data file}
can be written on one line as
line_1 // line_2 // ... line_n
This can aid legibility of the input file. Note that everything, including //, after the first \# on a line is intepreted as a comment,
- blank spaces, tabs and commas must not be used (embedded) in alphanumeric fields unless the label is enclosed in quotes, for example, the name Willow Creek would need to be appear in the data file as 'Willow Creek' to avoid an error,
- the \(\$\) symbol must not be used in the data file,
- alphanumeric factor level labels have a default size of 16 characters. Use the !LL size qualifier to extend the size of factor labels stored.
- extra data fields on a line are ignored,
- if there are fewer data items on a line than ASReml expects, the remainder are taken from the following line(s) except in .csv files were they are taken as missing. If you end up with half the number of records you expected, this is probably the reason,
- all lines beginning with ! followed by a blank are copied to the .asr file as comments for the output; their contents are ignored,

\subsection*{4.2.2 Fixed format data files}

The format must be supplied with the !FORMAT qualifier which is described in Table 5.5. However, if all fields are present and are separated, the file can be read free format.

\subsection*{4.2.3 Preparing data files in Excel}

Many users find it convenient to prepare their data in Excel, Access or some other database. Such data must be exported from these programs into either . CSv (Comma separated values) or .txt (TAB separated values) form for ASReml to read it. ASReml can convert an .xls file to a .csv file. When ASReml is invoked with an .xls file as the filename argument and there is no .csv file or .as with the same basename, it exports the first sheet as a .csv file and then generates a template .as command file from any column headings it finds (see page 195). It will also convert a Genstat .gsh spreadsheet file to . csv format. The data extracted from the .xls file are labels, numerical values and the results from formulae. Empty rows at the start and end of a block are trimmed, but empty rows in the middle of a block are kept. Empty columns are ignored. A single row of labels as the first non-empty row in the block will be taken as column names. Empty cells in this row will have default names C1, C2 etc. assigned. Missing values are commonly represented in ASReml data files by NA, * or .. ASReml will also recognise empty fields as missing values in .csv (.xls) files.

\subsection*{4.2 The data file}

\subsection*{4.2.4 Binary format data files}

Conventions for binary files are as follows:
- binary files are read as unformatted Fortran binary in single precision if the filename has a .bin or .BIN extension,
- Fortran binary data files are read in double precision if the filename has a .dbl or .DBL extension,
- ASReml recognises the value -1 e 37 as a missing value in binary files,
- Fortran binary in the above means all real (.bin) or all double precision (.dbl) variables; mixed types, that is, integer and alphabetic binary representation of variables is not allowed in binary files,
- binary files can only be used in conjunction with a pedigree file if the pedigree fields are coded in the binary file so that they correspond with the pedigree file (this can be done using the ! SAVE option in ASReml to form the binary file, see Table 5.5), or the identifiers are whole numbers less than 9,999,999 and the !RECODE qualifier is specified (see Table 5.5).

\section*{5 Command file: Reading the data}

\subsection*{5.1 Introduction}

In the code box to the right is the ASReml command file nin89a. as for a spatial analysis of the Nebraska Intrastate Nursery (NIN) field experiment introduced Chapter 3. The lines that are highlighted in bold/blue type relate to reading in the data. In this chapter we use this example to discuss reading in the data in detail.

Notice the in-line comment indicated by the \#.

\subsection*{5.2 Important rules}
```

NIN Alliance Trial }198
variety !A \# Alphanumeric
id
pid
raw
repl 4
nloc
yield
lat
long
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety
residual idv(units)

```

In the ASReml command file
- all blank lines are ignored,
- \# is used to annotate the input; all characters following a \# symbol on a line are ignored,
- lines beginning with ! followed by a blank are copied to the .asr file as comments for the output,
- a blank is the usual separator; TAB is also a separator,

\subsection*{5.2 Important rules}
- a comma as the last character on the line is sometimes used to indicate that the current list is continued on the next line; a comma is not needed when ASReml knows how many values to read,
- reserved words used in specifying the linear model (Table 6.1) are case sensitive; they need to be typed exactly as defined: they may not be abbreviated.
- a qualifier is a letter sequence preceded by ! which sets an option;
- some qualifiers require arguments,
- qualifiers must appear on the correct context,
- qualifier identifiers are not case sensitive,
- most qualifier identifiers may be truncated to 3 characters.

\subsection*{5.3 Title line}

The first 40 characters of the first nonblank text line in an ASReml command file are taken as a title for the job. Use this to document the analysis for future reference. An optional qualifier line (see section 11.3) may precede the title line. It is recognised by the presence
```

NIN Alliance Trial }198
variety !A
id
pid
\vdots

``` of the qualifier prefix letter !. Therefore the title MUST NOT include an exclamation mark.

\subsection*{5.4 Specifying and reading the data}

Typically, a data record consists of all the information pertaining to an experimental unit (plot, animal, assessment). Data field definitions manage the process of converting the fields as they appear in the data file to the internal form needed by ASReml. This involves mapping (coding) factors, general transformations, skipping fields and discarding unnecessary records. If the necessary information is not in a single file, the MERGE facility (see Chapter 12) may help.

Variables are defined immediately after the job title. These definitions indicate how each field in the data file is handled as it is read into ASReml. Transformations can be used to create additional variables. Users can explicity nominate how many are read with the ! READ qualifier described in Table 5.5. No more than 10,000 variables may be read or formed.

\section*{Data field definitions}
- should be given for all fields in the data file; fields can be skipped and fields (on the end of a data line) without a field definition are ignored; if there are not enough data fields on a data line, the remainder are taken from the next line(s),
- must be presented in the order they appear in the data file,
- can appear with other definitions on the same line,
```

NIN Alliance Trial 1989
variety !A
id
pid
raw
repl 4
nloc
yield
lat
long
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety
\vdots

```
- data fields can be transformed (see below):
- additional variables can be created by transformation qualifiers.

\subsection*{5.4 Specifying and reading the data}

\subsection*{5.4.1 Data field definition syntax}

Data field definitions appear in the ASReml command file in the form
SPACE label [field_type] [transformations]
- SPACE - is now optional
- label
- is an alphanumeric string to identify the field,
- has a maximum of 31 characters although only 20 are ever printed/displayed,
- must begin with a letter,
- must not contain the special characters ., \({ }^{*},:, /,!, \#, \$, \mid\) or (,
- reserved words (Table 6.1 and Table 7.6) must not be used,
- ! CSKIP [ \(c\) ] can be used to skip \(c\) (default 1) data fields.
- field_type defines how a variable is interpreted as it is read and whether it is regarded as a factor or variate if specified in the linear model,
- for a variate, leave field_type blank or specify 1,
- for a model factor, various qualifiers are required depending on the form of the factor coding where \(n\) is the number of levels of the factor and \(s\) is a list of labels (or the name of a file containing the labels one per row) to be assigned to the levels:
* or \(n \quad\) is used when the data field has values \(1 \ldots n\) directly coding for the factor unless the levels are to be labelled (see !L),
Row * \# 1:12 for example
\(!\mathrm{L} s \quad\) is used when the data field is numeric with values \(1 \ldots n\) and labels are to be assigned to the \(n\) levels, for example
Sex !L Male Female
\(!\mathrm{A}[n]\) is required if the data field is alphanumeric, for example Location ! A \# names Specify \(n\) if there are more than 1000 classes over all class/factor variables indicating the expected number for this factor.
! A ! L is used if the data field is alphanumeric and must be coded in a particular \(s \quad\) order to set the order of the levels. For example SNP !A !L C:C C:T T:T defines the levels over-riding the default, data dependent order.
If there are many labels, they may be written over several lines by using a trailing comma to indicate continuation of the list. New R4 Alternatively, the labels may be listed in a file. If the filename includes embedded blanks, or has no file extension, it must be enclosed in quotes:
Genotype ! A !L MyNames.txt
Genotype ! A !L 'My Names.txt'
Genotype ! A !L 'MyNames'
Use a ! SKIP qualifier after the filename to skip any heading lines. Names found in the data that are not included are simply appended to the list of levels as they are discovered by ASReml. An example of this would be for a genotype factor with 6 levels appearing in the data file in the order genb6 gena1 gena5 genb2 genb4 gena3. In this case
Genotype ! A !L gena1 genb2 gena3 genb4
would result in the levels of Genotype being ordered gena1 genb2 gena3 genb4 genb6 gena5.
! I \([n] \quad\) is required if the data is numeric defining a factor but not \(1 \ldots n\); ! I must be followed by \(n\) if more than 1000 codes are present,
Year !I \# 19951996
! AS \(p \quad\) is required if the data field has level names in common with a previous !A or ! I factor \(p\) and is to be coded identically, for example in a plant diallel experiment
Male ! A 22 Female !AS Male \# integrated coding
\(!\mathrm{P} \quad\) indicates the special case of a pedigree factor; ASReml will determine whether the identifiers are integer or alphanumeric from the pedigree file qualifiers, and set the levels after reading the pedigree file, see Section 9.3,

Animal ! P \# coded according to pedigree file
A warning is printed if the nominated value for \(n\) does not agree with the actual number of levels found in the data; if the nominated value is too small the correct value is used.
- for a group of \(m\) variates or factor variables
!G \(m[l]\) is used when \(m\) contiguous data fields comprise a set to be used together. The variables will be treated as factor variables if the second argument ( \(l\) ) setting the number of levels is present (it may be \(*\) ). For example
```

\vdots is equivalent to \vdots
X1 X2 X3 X4 X5 y X !G 5 y
data.dat data.dat
y ~ mu X1 X2 X3 X4 X5 y ~ mu X

```
- !DATE specifies the field has one of the date formats \(d d / m m / y y, d d / m m / c c y y, d d\)-Mon\(y y, d d\)-Mon-ccyy and is to be converted into a Julian day where \(d d\) is a 1 or 2 digit day of the month, \(m m\) is a 1 or 2 digit month of the year, Mon is a three letter month name (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec), yy is the year within the century ( 00 to 99 ), \(c c\) is the century ( 19 or 20 ). The separators ' \(/\) ' and '-' must be present as indicated. The dates are converted to days starting 1 Jan 1900. When the century is not specified, \(y y\) of 0-32 is taken as 2000-2032, 33-99 taken as 1933-1999.
- !DMY specifies the field has one of the date formats \(d d / m m / y y\) or \(d d / m m / c c y y\) and is to be converted into a Julian day.
- !MDY specifies the field has one of the date formats \(m m / d d / y y\) or \(m m / d d / c c y y\) and is to be converted into a Julian day.
- !TIME specifies the field has the time format hh:mm:ss. and is to be converted to seconds past midnight where \(h h\) is hours ( 0 to 23 ), \(m m\) is minutes ( \(0-59\) ) and \(s s\) is seconds ( 0 to 59). The separator ' \(:\) ' must be present.
- transformations are described below.

\subsection*{5.4.2 Storage of alphabetic factor labels}

Space is allocated dynamically for the storage of alphabetic factor labels with a default allocation being 2000 labels of 16 characters long. If there are large ! A factors (so that the total across all factors will exceed 2000), you must specify the anticipated size (within say \(5 \%\) ) of the larger factors.

If some labels are longer then 16 characters and the extra characters are significant, you must lengthen the space for each label by specifying !LL \(c\) e.g.
\[
\text { cross !A } 2300 \text { !LL } 48
\]
indicates the factor cross has about 2300 levels and needs 48 characters to hold the level names; only the first 20 characters of the names are ever printed.
!PRUNE on a field definition line means that if fewer levels are actually present in the factor than were declared, ASReml will reduce the factor size to the actual number of levels. Use !PRUNEALL for this action to be taken on the current and subsequent factors up to (but

\subsection*{5.4 Specifying and reading the data}
not including) a factor with the ! PRUNEOFF qualifier. The user may overestimate the size for large ALPHA and INTEGER coded factors so that ASReml reserves enough space for the list. Using ! PRUNE will mean the extra (undefined) levels will not appear in the .sln file. Since it is sometimes necessary that factors not be pruned in this way, for example in pedigree/GIV factors, pruning is only done if requested.

Normally a \# character in the data file will have the effect of eliminating whatever text follows on the line. This means that ordinarily the \# character may not be included in the name of the level of an alphanumeric variable. The qualifier !SPECIALCHAR cancels the normal meaning of the \# character in an input file so that it can be included in the name of a level of an alphanumeric or pedigree variable. If class names are being predefined, the qualifier !SPECIALCHAR must appear before the class names are read in.

\subsection*{5.4.3 Ordering factor levels}

The default order for factor levels when factors are declared with !I and ! A is the order the levels are encountered in the data file. !SORT declared after ! A or ! I on a field definition line will cause ASReml to fit the levels in (numeric) alphabetical order although they are defined in some other order. To control the order levels are defined, the level names must be prespecified using the ! L \(s\) qualifier (applies only to factors declared ! A ). Thus for a variable SEX coded as Male and Female, declared SEX ! A , the user cannot know whether it will be coded \(1=\) Male, \(2=\) Female or \(1=\) Female, \(2=\) Male without looking to see which occurs first in the data file. However declaring it as SEX ! A ! L Male Female will mean Male is coded 1 ; Female is coded 2. If it is declared as SEX !A !SORT, the coding order is unspecified but ASReml creates a lookup table after reading the data to arrange levels in sorted order and uses this sorted order when forming the design matrices. Consequentially, with the !SORT qualifier, the order of fitted effects will be \(1=\) Female, \(2=\) Male in the analysis regardless of which appears first in the file.

It will generally be preferable to presepecify the levels than to use !SORT because most other references to particular levels of factors will refer to the unsorted levels. Therefore users should verify that ASReml has made the correct interpretation when nominating specific levels of !SORTed factors. In particular any transformations are performed as the data is read in and before the sorting occurs.
!SORTALL means that the levels of this and subsequent factors are to be sorted.

\subsection*{5.4.4 Skipping input fields}

This is particularly useful in large files with alphabetic fields that are not needed as it saves ASReml the time required to classify the alphabetic labels. New R4!CSKIP \(f\) can be used to skip \(f\) fields. Thus

\subsection*{5.5 Transforming the data}
skips the first data field and reads the second and third fields into variables A and B, and
```

!CSKIP Sire !I !CSKIP 2 Y

```
will define two variables, Sire taken from the second data field and Y taken from the fifth data field. Also, ! SKIP \(f\) will skip \(f\) data fields BEFORE reading this field. Thus

Sire !I !SKIP 1 Y !SKIP 2
achieves the same result but in a less obvious way! These qualifiers are ignored when reading binary data.

Important Using the ! SKIP qualifier in association with the specification of a file to be read in allows initial lines of the file to be skipped. !SKIP can also be used to skip columns when reading in a data file. Use of !CSKIP for skipping data fields is recommended to avoid confusion.

\subsection*{5.5 Transforming the data}

Transformation is the process of modifying the data (for example, dividing all of the data values in a field by 10), forming new variables (for example, summing the data in two fields) or creating temporary data (for example, a test variable used to discard some records from analysis and subsequently discarded). Occasional users may find it easier to use a spreadsheet to calculate derived variables than to modify variables using ASReml transformations.

Transformation qualifiers are listed after data field labels (and the field_type if present). They define an operation (e.g. +), often involving an argument (a constant or another variable), which is performed on a target variable. By default the target is the current field, but can be changed with the !TARGET qualifier. For a ! g group of variables, the target is the first variable in the set.

Using transformations will be easier if you understand the process. As ASReml parses the variable definitions, it sequentially assigns them column positions in the internal data vector. It notes which is the last variable which is not created by (say the !=) transformation, and that determines how many fields are read from the data file (unless overridden by ! READ qualifier in Table 5.2). ASReml actually reads the data file after parsing the model line. It reads a line into a temporary vector, performs the transformations in that vector, and saves the values that relate to labelled variables to the internal data array. Note that
- there may be up to 10000 variables and these are internally labeled V1, V2 \(\cdots\) V10000 for transformation purposes. Values from the data file, ignoring any !SKIPed fields, are read into the leading variables,
- alpha (!A), integer (!I), pedigree (!P) and date (!DATE) fields are converted to real numbers (level codes) as they are read and before any transformations are applied,

\subsection*{5.5 Transforming the data}
- transformations may be applied to any variable (since every variable is numeric), but it may not be sensible to change factor level codes,
- transformations operate on a single variable (not a ! G group of variables) unless it is explicitly stated otherwise,
- transformations are performed in order for each record in turn,
- variables that are created by transformation should be defined after (below) variables that are read from the data file unless it is the explicit intention to overwrite an input variable (see below),
- after completing the transformations for each record, the values in the record for variables associated with a label are held for analysis, (or the record (all values) is discarded; see ! D transformation and Section 6.9),

Thus variables form three classes: those read from the data file, possibly modified, and labelled are available for subsequent use in analysis), those created and labelled are also available for subsequent use in the analysis and those created or read but not labelled (intermediate calculations) not required for subsequent analysis.

When listing variables in the field definitions, list those read from the data file first. After them, list (and define) the labelled variables that are to be created. The number of variables read can be explicitly set using the ! READ qualifier described in Table 5.5. Otherwise, if the first transformation on a field overwrites its contents (for instance using !=), ASReml recognises that the field does not need to be read in (unless a subsequent field does need to be read). For example,

A
B
C ! =A ! - B
reads two fields (A and B), and constructs C as A-B. All three are available for analysis. However,

A
B
C ! =A ! - B
D
E ! =D !-B
reads four fields (A, B, C and D) because the fourth field is not obviously created and must therefore be read even though the third field (C) is overwritten. The fifth field is not read but just created E .

Variables that have an explicit label, may be referenced by their explicit label or their internal label. Therefore, to avoid confusion, do not use explicit labels of the form \(V i\), where \(i\) is a number, for variables to be referred to in a transformation. Vi always refers to field/variable \(i\) in a transformation statement.

\subsection*{5.5 Transforming the data}

Variables that are not initialized from the data file, are initialized to missing value for the first record, and otherwise, to the values from the preceding record (after transformation). Thus

A
B
LagA !=V4 ! V4=A
reads two fields (A and B), and constructs LagA as the value of A from the previous record by extracting a value for LagA from working variable V4 before loading V4 with the current value of A .

\subsection*{5.5.1 Transformation syntax}

Transformation qualifiers have one of seven forms, namely
\begin{tabular}{ll} 
! operator & \begin{tabular}{l} 
to perform an operation on the current field, for example, \\
absY ! ABS to take absolute values,
\end{tabular} \\
!operator value & \begin{tabular}{l} 
to perform an operation involving an argument on the cur- \\
rent field, for example,
\end{tabular} \\
logY !=Y !~o copies Y and then takes logs, \\
!operator V field & \begin{tabular}{l} 
to perform an operation on the current field using the data \\
in another field, for example, !-V2 to subtract field 2 from \\
the current field,
\end{tabular} \\
!V target & \begin{tabular}{l} 
to reset the focus for subsequent transformations to field \\
number target,
\end{tabular} \\
!TARGET target & \begin{tabular}{l} 
to reset the focus for subsequent transformations to the pre- \\
viously named field target,
\end{tabular} \\
!V target \(=\) value & \begin{tabular}{l} 
to set the target field to a particular value,
\end{tabular} \\
V target \(=\mathrm{V}\) field & \begin{tabular}{l} 
to overwrite the data in a target field by the data values \\
of another field; a special case is when field is 0 instructing \\
ASReml to put the record number into the target field.
\end{tabular}
\end{tabular}
- operator is one of the symbols defined in Table 5.1,
- value is the argument, a real number, required by the transformation,
- V is the literal character and is followed by the number (target or field) of a data field; the data field is used or modified depending on the context,
- Vfield may be replaced by the label of the field if it already has a label,
- in the first three forms the operation is performed on the current field; this will be the field associated with the label unless the focus has been reset by specifying a new target in a preceding transformation,

\subsection*{5.5 Transforming the data}
- the last four forms change the focus of subsequent transformations to target,
- in the last two forms a value is assigned to the target field. For example, . . . ! V22=V11 . . . copies (existing) field 11 into field 22. Such a statement would typically be followed by more transformations. If there are fewer than 22 variables labelled then V22 is used in the transformation stage but not kept for analysis.
- only the !DOM and !RESCALE transformations automatically process a set of variables defined with the ! G field definition. All other transformations always operate on only a single field. Use the !DO ... !ENDDO transformations to perform them on a set of variables.

Table 5.1: List of transformation qualifiers and their actions with examples
\begin{tabular}{|c|c|c|c|}
\hline qualifier & argument & action & examples \\
\hline ! \(=\) & \(v\) & used to overwrite/create a variable with \(v\). It usually implies the variable is not read (see examples on page 52) & \[
\begin{aligned}
& \text { half !=0.5 } \\
& \text { zero !=0. }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& !+, \quad!-, \quad!*, \\
& !/
\end{aligned}
\] & \(v\) & usual arithmetic meaning; note that, \(0 / 0\) gives 0 but \(v / 0\) gives a missing value where \(v\) is not 0 . & yield !/10 \\
\hline ! & \(v\) & raises the data (which must be positive) to the power \(v\). & \[
\begin{aligned}
& \text { yield } \\
& \text { SQRyld !=yield } \\
& \text { !~0.5 }
\end{aligned}
\] \\
\hline ! & 0 & takes natural logarithms of the data (which must be positive). & ```
yield
LNyield !=yield
!^0
``` \\
\hline ! & -1 & takes reciprocal of data (data must be positive). & \[
\begin{aligned}
& \text { yield } \\
& \text { INVyield !=yield } \\
& !{ }^{\wedge}-1
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& !>,!<, \quad!<>, \\
& !==, \quad!<=, \\
& !>=
\end{aligned}
\] & \(v\) & logical operators forming 1 if true, 0 if false. & \[
\begin{aligned}
& \text { yield } \\
& \text { high !=yield !>10 }
\end{aligned}
\] \\
\hline ! ABS & & takes absolute values - no argument required. & ```
yield
ABSyield !=yield
!ABS
``` \\
\hline ! ARCSIN & \(v\) & forms an ArcSin transformation using the sample size specified in the argument, a number or another field. In the side example, for two existing fields Germ and Total containing counts, we form the ArcSin for their ratio (ASG) by copying the Germ field and applying the ArcSin transformation using the Total field as sample size. & \begin{tabular}{l}
Germ Total \\
ASG !=Germ !ARCSIN Total
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.5 Transforming the data}

Table 5.1: List of transformation qualifiers and their actions with examples
\begin{tabular}{|c|c|c|c|}
\hline qualifier & argument & action & examples \\
\hline !COS, !SIN & \(s\) & takes cosine and sine of the data variable with period \(s\) having default \(2 \pi\); omit \(s\) if data is in radians, set \(s\) to 360 if data is in degrees. & \begin{tabular}{l}
Day \\
CosDay !=Day !COS \\
365
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { !D, !D<>, } \\
& \text { !D<, !D<=, } \\
& \text { !D>, !D>= }
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\] & \(!\mathrm{D}[o] v\) discards records which have \(v\) or 'missing value' in the field, subject to the logical operator \(o\). & \[
\begin{aligned}
& \text { yield ! } D<=0 \\
& \text { yield ! } D<1 \text { ! } D>100
\end{aligned}
\] \\
\hline ! DV , !DV<>, !DV<, !DV<=, !DV>, !DV>= &  & \begin{tabular}{l}
\(!\mathrm{DV}[o] v\) discards records, subject to the logical operator \(o\), which have \(v\) in the field but keeps records with 'missing value' in the field; if !DV is used after ! A or ! I, \(v\) should refer to the encoded factor level rather than the value in the data file (see also Section 4.2). Use !DV * to discard just those records with a missing value in the field. \\
\(!\mathrm{D} v\) is equivalent to ! \(\mathrm{DV} *!\mathrm{DV} v\).
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \text { yield !DV<=0 } \\
& \text { yield !DV<1 } \\
& \text { !DV>100 }
\end{aligned}
\] \\
InitialWt !DV *
\end{tabular} \\
\hline ! DO & \(\left[n\left[i_{t}\left[i_{v}\right]\right]\right]\) & causes ASReml to perform the following transformations \(n\) times (default is variables in current term), incrementing the target by \(i_{t}\) (default 1) and the argument (if present) by \(i_{v}\) (default 0). Loops may not be nested. A loop is terminated by !ENDDO, another !DO or a new field definition, & See below \\
\hline !DOM & \(f\) & copies and converts additive marker covariables \((-1,0,1)\) to dominance marker covariables (see below). & \begin{tabular}{l}
ChrAadd ! G 10 ! MM .. \\
ChrAdom !DOM ChrAadd
\end{tabular} \\
\hline ! ENDDO & & terminates a !DO transformation block & See below \\
\hline ! EXP & & takes antilog base \(e\) - no argument required. & Rate ! EXP \\
\hline
\end{tabular}

Table 5.1: List of transformation qualifiers and their actions with examples
\begin{tabular}{|c|c|c|c|}
\hline qualifier & argument & action & examples \\
\hline \begin{tabular}{l}
! Jddm, \\
! Jmmd \\
! Jyyd
\end{tabular} & & ! Jddm converts a number representing a date in the form ddmmccyy, \(d d m m y y\) or \(d d m m\) into days. ! Jmmd converts a date in the form ccyym\(m d d\), yymmdd or \(m m d d\) into days. ! Jyyd converts a date in the form ccyyddd or yyddd into days. These calculate the number of days since December 311900 and are valid for dates from January 11900 to December 31 2099; note that if \(c c\) is omitted it is taken as 19 if \(y y\) \(>32\) and 20 if \(y y<33\), the date must be entirely numeric: characters such as / may not be present (but see !DATE). & \\
\hline \[
\begin{aligned}
& !\mathrm{M}, \quad!\mathrm{M}<> \\
& !\mathrm{M}<!\mathrm{M}<= \\
& !\mathrm{M}>!\mathrm{M}>=
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\] & \(!\mathrm{M} v\) converts data values of \(v\) to missing; if ! M is used after ! A or ! I , \(v\) should refer to the encoded factor level rather than the value in the data file (see also Section 4.2). & \[
\begin{aligned}
& \text { yield ! } \mathrm{M}-9 \\
& \text { yield }!\mathrm{M}<=0 \quad!\mathrm{M}>100
\end{aligned}
\] \\
\hline ! MAX, !MIN, !MOD & \(v\) & the maximum, minimum and modulus of the field values and the value \(v\). & yield ! MAX 9 \\
\hline ! MM & \(s\) & assigns Haldane map positions \((s)\) to marker variables and imputes missing values to the markers (see below). & ChrAadd ! G 10 ! MM \(1 \ldots\) \\
\hline ! NA & \(v\) & replaces any missing values in the variate with the value \(v\). If \(v\) is another field, its value is copied. & ```
Rate !NA O
WT !=Wt2 !NA Wt1
``` \\
\hline ! NORMAL & \(v\) & replaces the variate with normal random variables having variance \(v\). & \begin{tabular}{l}
Ndat !=0 !Normal 4.5 is equivalent to \\
Ndat !=Normal 4.5
\end{tabular} \\
\hline ! REPLACE & o \(n\) & \begin{tabular}{l}
replaces data values \(o\) with \(n\) in the current variable. I.e. \\
IF (DataValue.EQ.o) \\
DataValue=n
\end{tabular} & Rate ! REPLACE -9 0 \\
\hline !RESCALE & \(o s\) & rescales the column(s) in the current variable (! G group of variables) us\(\operatorname{ing} \boldsymbol{Y}=(\boldsymbol{Y}+o) * s\) & Rate !RESCALE -10 0.1 \\
\hline !SEED & \(v\) & sets the seed for the random number generator. & ... !SEED 848586 \\
\hline
\end{tabular}

Table 5.1: List of transformation qualifiers and their actions with examples
\begin{tabular}{|c|c|c|c|}
\hline qualifier & argument & action & examples \\
\hline !SET & vlist & for \(v\) list, a list of \(n\) values, the data values \(1 \ldots n\) are replaced by the corresponding element from vlist; data values that are \(<1\) or \(>n\) are replaced by zero. vlist may run over several lines provided each incomplete line ends with a comma, i.e., a comma is used as a continuation symbol (see Other examples below). & ```
treat !L C A B
CvR !=treat !SET 1 -1 -1
group !=treat !SET 1,
2 2 3 34
``` \\
\hline ! SETN & \(v n\) & !SETN \(v n\) replaces data values 1 : \(n\) with normal random variables having variance \(v\). Data values outside the range \(1 \cdots n\) are set to 0 . & Anorm !=A !SETN 2.510 \\
\hline ! SETU & \(v n\) & replaces data values \(1: n\) with uniform random variables having range \(0: v\). Data values outside the range \(1 \cdots n\) are set to 0 . & Aeff !=A !SETU 510 \\
\hline ! SUB & vlist & replaces data values \(=v_{i}\) with their index \(i\) where vlist is a vector of \(n\) values. Data values not found in vlist are set to 0 . vlist may run over several lines if necessary provided each incomplete line ends with a comma. ASReml allows for a small rounding error when matching. It may not distinguish properly if values in vlist only differ in the sixth decimal place (see Other examples below). & year 3 !SUB 666768 \\
\hline !SEQ & & replaces the data values with a sequential number starting at 1 which increments whenever the data value changes between successive records; the current field is presumed to define a factor and the number of levels in the new factor is set to the number of levels identified in this sequential process (see Other examples below). Missing values remain missing. & plot !=V3 ! SEQ \\
\hline ! TARGET & \(v\) & changes the focus of subsequent transformations to variable (field) \(v\). & \begin{tabular}{l}
sqrtA \\
meanAB !+A !/2 , \\
!TARGET sqrtA ! 0.5
\end{tabular} \\
\hline ! UNIFORM & \(v\) & replaces the variate with uniform random variables having range \(0: v\). & Udat !=0. ! UNIFORM 4.5 \\
\hline
\end{tabular}

Table 5.1: List of transformation qualifiers and their actions with examples
\begin{tabular}{|c|c|c|c|}
\hline qualifier & argument & action & examples \\
\hline \multirow[t]{2}{*}{! V target=} & value & assigns value to data field target overwriting previous contents; subsequent transformation qualifiers will operate on data field target. & \(\ldots!\mathrm{V}=2.5\) \\
\hline & Vfield & assigns the contents of data field field to data field target overwriting previous contents; subsequent transformation qualifiers will operate on data field target. If field is 0 the number of the data record is inserted. & \[
\begin{aligned}
& \cdots!\mathrm{V} 10=\mathrm{V} 3 \\
& \ldots!\text { V11=block } \\
& \cdots!\text { V12=V0 }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{5.5.2 QTL marker transformations}
! MM \(s\) associates marker positions in the vector \(s\) (based on the Haldane mapping function) with marker variables and replaces missing values in a vector of marker states with expected values calculated using distances to non-missing flanking markers. This transformation will normally be used on a ! \(G n\) factor where the \(n\) variables are the marker states for \(n\) markers in a linkage group in map order and coded \([-1,1]\) (backcross) or \([-1,0,1]\) (F2 design). \(s\) (length \(n+1)\) should be the \(n\) marker positions relative to a left telomere position of zero, and an extra value being the length of the linkage group (the position of the right telomere). The length (right telomere) may be omitted in which case the last marker is taken as the end of the linkage group. The positions may be given in Morgans or centiMorgans (if the length is greater than 10, it will be divided by 100 to convert to Morgans).

The recombination rate between markers at \(s_{L}\) and \(s_{R}\) ( L is left and R is right of some putative QTL at Q) is
\(\theta_{L R}=\left(1-e^{-2\left(s_{R}-s_{L}\right)}\right) / 2\).
Consequently, for 3 markers ( \(\mathrm{L}, \mathrm{Q}, \mathrm{R}\) ), \(\theta_{L R}=\theta_{L Q}+\theta_{Q R}-2 \theta_{L Q} \theta_{Q R}\).
The expected value of a missing marker at Q (between L and R ) depends on the marker states at L and R: \(E(q \mid 1,1)=\left(1-\theta_{L Q}-\theta_{Q R}\right) /\left(1-\theta_{L R}\right)\),
\(E(q \mid 1,-1)=\left(\theta_{Q R}-\theta_{L Q}\right) / \theta_{L R}, E(q \mid-1,1)=\left(\theta_{L Q}-\theta_{Q R}\right) / \theta_{L R}\)
and \(E(q \mid-1,-1)=\left(-1+\theta_{L Q}+\theta_{Q R}\right) /\left(1-\theta_{L R}\right)\).
Let \(\lambda_{L}=(E(q \mid 1,1)+E(q \mid 1,-1)) / 2=\frac{\theta_{Q R}\left(1-\theta_{Q R}\right)\left(1-2 \theta_{L Q}\right)}{\theta_{L R}\left(1-\theta_{L R}\right)}\)
and \(\lambda_{R}=(E(q \mid-1,1)+E(q \mid-1,-1)) / 2=\frac{\theta_{L Q}\left(1-\theta_{L Q}\right)\left(1-2 \theta_{Q R}\right)}{\theta_{L R}\left(1-\theta_{L R}\right)}\)
Then \(E\left(q \mid x_{L}, x_{R}\right)=\lambda_{L} x_{L}+\lambda_{R} x_{R}\). Where there is no marker on one side, \(E\left(q \mid x_{R}\right)=\) \(\left(1-\theta_{Q R}\right) x_{R}+\theta_{Q R}\left(-x_{R}\right)=x_{R}\left(1-2 \theta_{Q R}\right)\). This qualifier facilitates the QTL method discussed in Gilmour (2007).

\subsection*{5.5 Transforming the data}
!DOM \(A\) is used to form dominance covariables from a set of additive marker covariables previously declared with the! MM marker map qualifier. It assumes the argument \(A\) is an existing group of marker variables relating to a linkage group defined using ! MM which represents additive marker variation coded \([-1,0,1]\) (representing marker states \(a a, a A\) and \(A A)\) respectively. It is a group transformation which takes the \([-1,1]\) interval values, and calculates \((|X|-0.5) * 2\) i.e. -1 and 1 become one, 0 becomes -1 . The marker map is also copied and applied to this model term so it can be the argument in a qtl() term (page 100).
!DO ... !ENDDO provides a mechanism to repeat transformations on a set of variables. All tranformations except!DOM and ! RESCALE operate once on a single field unless preceded by a ! DO qualifier. The ! DO qualifier has three arguments: \(n\left[\left[i_{t}\right] i_{v}\right] . n\) is the number of times the following transformations are to be performed. \(i_{t}\) (default 1 ) is the increment applied to the target field. \(i_{v}\) (default 0.0) is the increment applied to the transformation argument. The default for \(n\) is the number of variables in the current field definition. !ENDDO is formally equivalent to !DO 1 and is implicit when another !DO appears or the next field definition begins. Note that when several transformations are repeated, the processing order is that each is performed \(n\) times before the next is processed (contrary to the implication of the syntax). However, the target is reset for each transformation so that the transformations apply to the same set of variables.
```

Y1 Y2 Y3 Y4 Y5 \# Repeat 5 times, incrementing just
Ymean !=0. !DO 5 0 1 !+Y1 !ENDDO !/5 \# the argument
is equivalent to
Y1 Y2 Y3 Y4 Y5
Ymean !=0. !+Y1 !+Y2 !+Y3 !+Y4 !+Y5 !/5

```
Y0 Y1 Y2 Y3 Y4 Y5 !TARGET Y1 !do 510 !-Y0 !ENDDO\#Take YO from rest
Markers !G 12 !do !D * !ENDDO \# Delete records with missing marker values
The default arguments \((12,1,0\).\() are used. The initial target is the first marker.\)

\subsection*{5.5.3 Remarks concerning transformations}

Note the following
- variables that are created should be listed after all variables that are read in unless the intention is to overwrite an input field.
- missing values are unaffected by arithmetic operations, that is, missing values in the current or target column remain missing after the transformation has been performed except in assignment
- !+3 will leave missing values (NA, * and .) as missing,
- ! =3 will change missing values to 3 ,
- multiple arithmetic operations cannot be expressed in a complex expression but must be given as separate operations that are performed in sequence as they appear, for example, yield !-120 !*0.0333 would calculate \(0.0333 *\) (yield - 120),

\subsection*{5.5 Transforming the data}
- Most transformations only operate on a single field and will not therefore be performed on all variables in a ! G factor set. The only transformations that apply to the whole set are !DOM, !MM and !RESCALE.
\begin{tabular}{|c|c|}
\hline ASReml code & action \\
\hline yield !MO & changes the zero entries in yield to missing values \\
\hline yield ! \({ }^{\text {- }}\) & takes natural logarithms of the yield data \\
\hline score !-5 & subtracts 5 from all values in score \\
\hline score ! SET -0.5 1.5 2.5 & replaces data values of 1,2 and 3 with -0.5, 1.5 and 2.5 respectively \\
\hline score ! SUB -0.51 .512 .5 & replaces data values of \(-0.5,1.5\) and 2.5 with 1,2 and 3 respectively; a data value of 1.51 would be replaced by 0 since it is not in the list or very close to a number in the list \\
\hline ```
block 8
variety 20
yield
plot * !=variety !SEQ
``` & \begin{tabular}{l}
in the case where \\
- there are multiple units per plot, \\
- contiguous plots have different treatments, and \\
- the records are sorted units within plots within blocks, \\
this code generates a plot factor assuming a new plot whenever the code in V2 (variety) changes; whether this creates a variable or overwrites an input variable depends on whether any subsequent variables are input variables,
\end{tabular} \\
\hline ```
Var 3
Nit 4
VxN 12 !=Var !-1 !*4 !+Nit
``` & assuming Var is coded 1:3 and Nit is coded 1:4, this syntax could be used to create a new factor VxN with the 12 levels of the composite Var by Nit factor. \\
\hline \[
\begin{aligned}
& \text { YA !V98=YA !NA } 0 \\
& \text { YB !V99=YB !NA } 0 \text { !+V98 !D0 }
\end{aligned}
\] & will discard records where both YA and YB have missing values (assuming neither have zero as valid data). The first line sets the focus to variable 98, copies YA into V98 and changes any missing values in V98 to zero. The second line sets the focus to variable 99, copies YB into V99 and changes any missing values in V99 to zero. It then adds V98 and discards the whole record if the result is zero, i.e. both YA and YB have missing values for that record. Variables 98 and 99 are not labelled and so are not retained for subsequent use in analysis. \\
\hline
\end{tabular}

Var 3
Nit 4
VxN 12 !=Var !-1 ! * 4 !+Nit
YA ! V98=YA ! NA 0
YB ! V99=YB ! NA 0 !+V98 ! D0
changes the zero entries in yield to missing values
takes natural logarithms of the yield data
subtracts 5 from all values in score
replaces data values of 1,2 and 3 with \(-0.5,1.5\) and 2.5 respectively
replaces data values of \(-0.5,1.5\) and 2.5 with 1,2 and 3 respectively; data value of 1.51 would be replaced by 0 since it is not in the
in the case where
- there are multiple units per plot,
- contiguous plots have different treatments, and
- the records are sorted units within plots within blocks,
this code generates a plot factor assuming a new plot whenever the code in V2 (variety) changes; whether this creates a variable or overwrites an input variable depends on whether any subsequent assuming Var is coded 1:3 and Nit is coded 1:4, this syntax could be used to create a new factor VxN with the 12 levels of the composite Var by Nit factor.
will discard records where both YA and YB have missing values (assuming neither have zero as valid data). The first line sets the focus to variable 98, copies YA into V98 and changes any missing values in V98 to zero. The second line sets the focus to variable 99, copies YB into V99 and changes any missing values in V99 to . Variables 98 and 99 are not labelled and so are not retained for subsequent use in analysis.

\subsection*{5.6 Datafile line}

\subsection*{5.5.4 Special note on covariates}

Covariates are variates that appear as independent variables in the model. It is recommended that covariates be centred and scaled to have a mean near zero and a variance of about one to avoid failure to detect singularities. This can be achieved either
- externally to ASReml in data file preparation,
- using !RESCALE -mean scale where mean and scale are user supplied values, for example, age !rescale -140. 142857 \# in weeks

\subsection*{5.6 Datafile line}

The purpose of the datafile line is to
- nominate the data file,
- specify qualifiers to modify
- the reading of the data,
- the output produced,
- the operation of ASReml.
```

NIN Alliance Trial 1989
variety !A
:
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety
\vdots

```

\subsection*{5.6.1 Data line syntax}

The datafile line appears in the ASReml command file in the form

\section*{datafile [qualifiers]}
- datafile is the path name of the file that contains the variates, factors, covariates, traits (response variates) and weight variables represented as data fields, see Chapter 4; enclose the path name in quotes if it contains embedded blanks,
- the qualifiers tell ASReml to modify either
- the reading of the data and/or the output produced, see Table 5.2 below for a list of data file related qualifiers,
- the operation of ASReml, see Tables 5.3 to 5.6 for a list of job control qualifiers
- the data file related qualifiers must appear on the data file line,
- the job control qualifiers may appear on the data file line or on following lines,
- the arguments to qualifiers are represented by the following symbols
\(f\) - a filename,
\(n\) - an integer number, typically a count,

\subsection*{5.7 Data file qualifiers}
\(p-\mathrm{a}\) vector of real numbers, typically in increasing order,
\(r\) - a real number,
\(s\) - a character string,
\(t\) - a model term label,
\(v\) - the number or label of a data variable,
vlist - a list of variable labels.

\subsection*{5.7 Data file qualifiers}

Table 5.2 lists the qualifiers relating to data input. Use the Index to check for examples or further discussion of these qualifiers.

Table 5.2: Qualifiers relating to data input and output
```

qualifier action

```

\section*{Frequently used data file qualifiers}
!SKIP \(n \quad\) causes the first \(n\) records of the (non-binary) data file to be ignored.
Typically these lines contain column headings for the data fields.

\section*{Other data file qualifiers}
\begin{tabular}{ll} 
!COLUMNFACTOR \(v\) & \begin{tabular}{l} 
is used in combination with ! ROWFACTOR [and !SECTION] to get ASReml \\
to insert extra data records to complete the grid of plots defined by \\
the RowFactor and the ColumnFactor for each Section so that a two- \\
dimensional error structure can be defined (see !SECTION on page 73 ),
\end{tabular} \\
!CSV & \begin{tabular}{l} 
used to make consecutive commas imply a missing value; this is auto-, \\
matically set if the file name ends with . csv or .CSV (see Section 4.2) \\
Warning This qualifier is ignored when reading binary data.
\end{tabular} \\
!DATAFILE \(f\) & \begin{tabular}{l} 
specifies the datafile name replacing the one obtained from the datafile \\
line. It is required when different !PATHS (see !DOPATH in Table 11.3) of \\
a job must read different files. The ! SKIP qualifier, if specified, will be
\end{tabular} \\
applied when reading the file.
\end{tabular}

\subsection*{5.7 Data file qualifiers}

Table 5.2: Qualifiers relating to data input and output
qualifier
action
!FOLDER \(s\)
!FORMAT \(s\)
specifies an alternative folder for ASReml to find input files. This qualifier is usually placed on a separate line BEFORE the data filename line (and any pedigree/.giv .grm filename lines. For example, ! FOLDER ../Data
data.asd !SKIP 1
is equivalent to

\section*{../Data/data.asd !SKIP 1}
supplies a Fortran like FORMAT statement for reading fixed format files. A simple example is ! FORMAT ( 3 I \(4,5 \mathrm{~F} 6.2\) ) which reads 3 integer fields and 5 floating point fields from the first 42 characters of each data line. A format statement is enclosed in parentheses and may include 1 level of nested parentheses, for example, e.g. !FORMAT(4x,3(I4,f8.2)). Field descriptors are
- \(r \mathrm{X}\) to skip \(r\) character positions,
- \(r \mathrm{~A} w\) to define \(r\) consecutive fields of \(w\) characters width,
- \(r \mathrm{I} w\) to define \(r\) consecutive fields of \(w\) characters width, and
- \(r \mathrm{~F} w . d\) to define \(r\) consecutive fields of \(w\) characters width; \(d\) indicates where to insert the decimal point if it is not explicitly present in the field,
where \(r\) is an optional repeat count.
In ASReml, the A and I field descriptors are treated identically and simply set the field width. Whether the field is interpreted alphabetically or as a number is controlled by the ! A qualifier.
Other legal components of a format statement are
- the , character; required to separate fields - blanks are not permitted in the format.
- the / character; indicates the next field is to be read from the next line. However a / on the end of a format to skip a line is not honoured.
- BZ; the default action is to read blank fields as missing values. * and NA are also honoured as missing values. If you wish to read blank fields as zeros, include the string BZ.
- the string BM; switches back to 'blank missing' mode.
- the string \(\mathrm{T} c\); moves the 'last character read' pointer to line position \(c\) so that the next field starts at position \(c+1\). For example T0 goes back to the beginning of the line.
- the string D; invokes debug mode.

A format showing these components is ! FORMAT ( \(\mathrm{D}, 3 \mathrm{I} 4,8 \mathrm{X}, \mathrm{A} 6,3(2 \mathrm{x}, \mathrm{F} 5.2) / 4 \mathrm{x}, \mathrm{BZ}, 20 \mathrm{I} 1\) ) and is suitable for reading 27 fields from 2 data records such as 111122223333 xxxxxxxxALPHAFxx 4.12 xx 5.32 xx 6.32 xxxx123 5679013457890

\subsection*{5.7 Data file qualifiers}

Table 5.2: Qualifiers relating to data input and output
qualifier
action
may be specified on a line following the datafile line. The purpose is to combine data fields from the (primary) data file with data fields from a secondary file \((f)\). This !MERGE qualifier has been superseded by the much more powerful MERGE statement (see Chapter 12).
The effect is to open the named file (skip \(n\) lines) and then insert the columns from the new file into field positions starting at position \(c\). If ! MATCH \(a b\) is specified, ASReml checks that the field \(a(0<a<c)\) has the same value as field \(b\). If not, it is assumed that the merged file has some missing records and missing values are inserted into the data record and the line from the MERGE file is kept for comparison with the next record.
It is assumed that the lines in the MERGE file are in the same order as the corresponding lines occur in the primary data file, and that there are no extraneous lines in the MERGE file. A much more powerful merging facility is provided by the MERGE directive described in Chapter 12.

For example, assuming the field definitions define 10 fields,
PRIMARY.DAT !skip 1
!MERGE 6 SECOND.DAT !SKIP 1 !MATCH 16
would obtain the first five fields from PRIMARY. DAT and the next five from SECOND.DAT, checking that the first field in each file has the same value.

Thus each input record is obtained by combining information from each file, before any transformations are performed.
formally instructs ASReml to read \(n\) data fields from the data file. It is needed when there are extra columns in the data file that must be read but are only required for combination into earlier fields in transformations, or when ASReml attempts to read more fields than it needs to.
is required when reading a binary data file with pedigree identifiers that have not been recoded according to the pedigree file. It is not needed when the file was formed using the ! SAVE option but will be needed if formed in some other way (see Section 4.2).
is used in combination with ! COLUMNFACTOR [and !SECTION] to get ASReml to insert extra data records to complete the grid of plots defined by the RowFactor and the ColumnFactor for each Section so that a twodimensional error structure can be defined (see !SECTION on page 73),
causes ASReml to read \(n\) records or to read up to a data reading error if \(n\) is omitted, and then process the records it has. This allows data to be extracted from a file which contains trailing non-data records (for example extracting the predicted values from a .pvs file). The argument \((n)\) specifies the number of data records to be read. If not supplied, ASReml reads until a data reading error occurs, and then processes the data it has. Without this qualifier, ASReml aborts the job when it encounters a data error. See ! RSKIP.

Table 5.2: Qualifiers relating to data input and output
```

qualifier
action

```
!RSKIP \(n[s]\)
allows ASReml to skip lines at the heading of a file down to (and including) the \(n\)th instance of string \(s\). For example, to read back the third set predicted values in a .pvs file, you would specify !RREC !RSKIP 4 ' Ecode'
since the line containing the 4th instance of 'Ecode' immediately precedes the predicted values. The ! RREC qualifier means that ASReml will read until the end of the predict table. The keyword Ecode which occurs once at the beginning and then immediately before each block of data in the .pvs file is used to count the sections.

\subsection*{5.7.1 Combining rows from separate files}

ASReml can read data from multiple files provided the files have the same layout. The file specified as the 'primary data file' in the command file can contain lines of the form ! INCLUDE <filename> !SKIP \(n\) where <filename> is the (path)name of the data subfile and !SKIP \(n\) is an optional qualifier indicating that the first \(n\) lines of the subfile are to be skipped. After reading each subfile, input reverts to the primary data file.

Typically, the primary data file will just contain! INCLUDE statements identifying the subfiles to include. For example, you may have data from a series of related experiments in separate data files for individual analysis. The primary data file for the subsequent combined analysis would then just contain a set of ! INCLUDE statements to specify which experiments were being combined.

If the subfiles have CSV format, they should all have it and the ! CSV file should be declared on the primary datafile line. This option is not available in combination with !MERGE.

\subsection*{5.8 Job control qualifiers}

The following tables list the job control qualifiers. These change or control various aspects of the analysis. Job control qualifiers may be placed on the datafile line and following lines. They may also be defined using an environment variable called ASREML_QUAL. The environment variable is processed immediately after the datafile line is processed. All qualifier settings are reported in the .asr file. Use the Index to check for examples or further discussion of these qualifiers.

Important Many of these are only required in very special circumstances and new users

\subsection*{5.8 Job control qualifiers}
should not attempt to understand all of them. You do need to understand that all general qualifiers are specified here. Many of these qualifiers are referenced in other chapters where their purpose will be more evident.

Table 5.3: List of commonly used job control qualifiers
\begin{tabular}{ll}
\hline qualifier \(\quad\) action \\
\hline
\end{tabular}

New R4 These qualifiers are used to restart/resume iterations from the point reached in a previous run. The qualifier !CONTINUE [ \(f\) ] can alternately be set from the command line using the option letter C [f] (see Section 11.3 on command line options). In each run ASReml writes the initial values of the variance parameters to a file with extension .tsv (template-start values) with information to identify individual variance parameters. After each iteration, ASReml writes the current values of the variance parameters to files with extension .rsv (re-start values) and .msv; the .msv version has information to clearly identify each variance parameter. If \(f\) is not set, then ASReml looks for a .rsv file with the same name used for the output files, ie. the . as name possibly appended by arguments. ASReml then scans this file for parameter values related to the current model, replacing the values obtained from the . as file before iteration resumes. If !CONTINUE 2 or !TSV is used then the .tsv file is used instead of the .rsv file. Similarly, if !CONTINUE 3 or !MSV are used then the .msv file is used instead of the .rsv file. If \(f=\mathrm{filename}\), with no extension, is used with ! CONTINUE, ! TSV or ! MSV, ASReml will use the file f.rsv, f.tsv or \(\mathrm{f} . \mathrm{msv}\). If \(f=\mathrm{filename} . \mathrm{xsv}\) with \(\mathrm{x}=\mathrm{r}, \mathrm{t}\) or \(m\) is used with !CONTINUE, !TSV or !MSV, ASReml will use the file f.xsv. If the specified file is not present, ASReml reverts to reading the previous .rsv file. Some users may prefer, rather than specifying initial values in the model formulation, to generate a default .tsv file using !MAXIT 0 and then edit the .tsv file with more appropriate values. If the model has changed and ! CONTINUE is used, ASReml will pick up the values it recognises as being for the same terms from the .rsv file. Furthermore, ASReml will use estimates in the .rsv file for certain models to provide starting values for certain more general models, inserting reasonable defaults where necessary. The transitions recognised are listed and discussed in Section 7.9.2

\subsection*{5.8 Job control qualifiers}

Table 5.3: List of commonly used job control qualifiers
qualifier
action
!CONTRAST s t p
provides a convenient way to define contrasts among treatment levels. ! CONTRAST lines occur as separate lines between the datafile line and the model line.
\(s\) is the name of the model term being defined.
\(t\) is the name of an existing factor. \(p\) is the list of contrast coefficients. For example
! CONTRAST LinN Nitrogen 3 1-1 -3
defines LinN as a contrast based on the 4 (implied by the length of the list) levels of factor Nitrogen. Missing values in the factor become missing values in the contrast. Zero values in the factor (no level assigned) become zeros in the contrast. The user should check that the levels of the factor are in the order assumed by contrast (check the . ass or .sln or .tab files). It may also be used on the implicit factor Trait in a multivariate analysis provided it implicitly identifies the number of levels of Trait; the number of traits is implied by the length of the list. Thus, if the analysis involves 5 traits,
!CONTRAST Time Trait 1351020
requests computation of the approximate denominator degrees of freedom according to Kenward and Roger (1997) for the testing of fixed effects terms in the dense part of the linear mixed model. There are three options for \(i\) : \(i=-1\) suppresses computation, \(i=1\) and \(i=2\) compute the denominator d.f. using numerical and algebraic methods respectively.
If \(i\) is omitted then \(i=2\) is assumed.
If !DDF \(i\) is omitted, \(i=-1\) is assumed except for small jobs \((<10\) parameters, \(<500\) fixed effects, \(<10,000\) equations and \(<100\) Mbyte workspace) when \(i=2\).

Calculation of the denominator degrees of freedom is computationally expensive. Numerical derivatives require an extra evaluation of the mixed model equations for every variance parameter. Algebraic derivatives require a large dense matrix, potentially of order number of equations plus number of records and is not available when MAXIT is 1 or for multivariate analysis.
adds a 'conditional' Wald F statistic column to the Wald F Statistics table. It enables inference for fixed effects in the dense part of the linear mixed model to be conducted so as to respect both structural and intrinsic marginality (see Section 2.5). The detail of exactly which terms are conditioned on is reported in the .aov file. The marginality principle used in determining this conditional test is that a term cannot be adjusted for another term which encompasses it explicitly (e.g. term A.C cannot be adjusted for A.B.C) or implicitly (e.g. term REGION cannot be adjusted for LOCATION when locations are actually nested in regions although they are coded independently). !FOWN on page 78 provides a way of replacing the conditional Wald F statistic by specifying what terms are to be adjusted for, provided its degrees of freedom are unchanged from the incremental test.

\subsection*{5.8 Job control qualifiers}

Table 5.3: List of commonly used job control qualifiers
qualifier action
sets the maximum number of iterations; the default is 10 for traditional models, more for general models. ASReml iterates for \(n\) iterations unless convergence is achieved first. Convergence is presumed when the REML log-likelihood changes less than \(0.002^{*}\) current iteration number and the individual variance parameter estimates change less than \(1 \%\).

If the job has not converged in \(n\) iterations, use the !CONTINUE qualifier to resume iterating from the current point.

To abort the job at the end of the current iteration, create a file named ABORTASR.NOW in the directory in which the job is running. At the end of each iteration, ASReml checks for this file and if present, stops the job, producing the usual output but not producing predicted values since these are calculated in the last iteration. Creating FINALASR.NOW will stop ASReml after one more iteration (during which predictions will be formed).

On case sensitive operating systems (eg. Unix), the filename (ABORTASR.NOW or FINALASR.NOW) must be upper case. Note that the ABORTASR.NOW file is deleted so nothing of importance should be in it. If you perform a system level abort (CTRL C or close the program window) output files other than the .rsv file will be incomplete. The .rsv file should still be functional for resuming iteration at the most recent parameter estimates (see !CONTINUE).

Use !MAXIT 1 where you want estimates of fixed effects and predictions of random effects for the particular set of variance parameters supplied as initial values. Otherwise the estimates and predictions will be for the updated variance parameters (see the !BLUP qualifier below).

If !MAXIT 1 is used and an Unstructured Variance model is fitted, ASReml will perform a Score test of the US matrix. Thus, assume the variance structure is modelled with reduced parameters, if that modelled structure is then processed as the initial values of a US structure, ASReml tests the adequacy of the reduced parameterization.
causes ASReml to report a general description of the distribution of the data variables and factors and simple correlations among the variables for those records included in the analysis. This summary will ignore data records for which the variable being analysed is missing unless a multivariate analysis is requested or missing values are being estimated. The information is written to the .ass file.
is used to plot the (transformed) data. Use ! X to specify the \(x\) variable, !Y to specify the \(y\) variable and ! G to specify a grouping variable. ! JOIN joins the points when the \(x\) value increases between consecutive records. The grouping variable may be omitted for a simple scatter plot. Omit ! Y \(y\) produce a histogram of the \(x\) variable.

For example,
! X age ! Y height ! G sex
Note that the graphs are only produced in the graphics versions of ASReml (Section 11.3).

\subsection*{5.8 Job control qualifiers}

Table 5.3: List of commonly used job control qualifiers
```

qualifier
action

```

For multivariate repeated measures data, ASReml can plot the response profiles if the first response is nominated with the ! Y qualifier and the following analysis is of the multivariate data. ASReml assumes the response variables are in contiguous fields and are equally spaced. For example
Response profiles
Treatment ! A
Y1 Y2 Y3 Y4 Y5
rat.asd !Y Y1 !G Treatment !JOIN
Y1 Y2 Y3 Y4 Y5 ~ Trait Treatment Trait.Treatment

Table 5.4: List of occasionally used job control qualifiers
qualifier action
!ASMV \(n\)
indicates a multivariate analysis is required although the data is presented in a univariate form. 'Multivariate Analysis' is used in the narrow sense where an unstructured error variance matrix is fitted across traits, records are independent, and observations may be missing for particular traits, see Chapter 8 for a complete discussion.

The data is presumed arranged in lots of \(n\) records where \(n\) is the number of traits. It may be necessary to expand the data file to achieve this structure, inserting a missing value NA on the additional records. This option is sometimes relevant for some forms of repeated measures analysis. There will need to be a factor in the data to code for trait as the intrinsic Trait factor is undefined when the data is presented in a univariate manner.
indicates that a univariate analysis is required although the data is presented in a multivariate form. Specifically, it allows you to have an error variance other than \(I \otimes \boldsymbol{\Sigma}\) where \(\boldsymbol{\Sigma}\) is the unstructured (US, see Table 7.6) variance structure. If there are missing values in the data, include !f mv on the end of the linear model. The intrinsic factor Trait is defined and may be used in the model. See Chapter 8 for more information.

This option is used for repeated measures analysis when the variance structure required is not the standard multivariate unstructured matrix.
causes ASReml to write the design matrix, not including the response variable, to a .des file. It allows ASReml to create the design matrix required by the VCM process, see Section 7.8.2

\subsection*{5.8 Job control qualifiers}

Table 5.4: List of occasionally used job control qualifiers
qualifier action
is used to select particular graphic displays. In spatial analysis of field trials, four graphic displays are possible (see Section 14.4). Coding these
\(1=\) variogram
\(2=\) histogram
\(4=\) row and column trends
\(8=\) perspective plot of residuals,
set \(n\) to the sum of the codes for the desired graphics. The default is \(9=1+8\).
These graphics are only displayed in versions of ASReml linked with Winteracter (that is, Linux, MAC and PC) versions. Line printer versions of these graphics are written to the .res file. See the G command line option (Section 11.3 on graphics) for how to save the graphs in a file for printing.
Use ! NODISPLAY to suppress graphic displays.
sets hardcopy graphics file type to .eps.
!GKRIGE \([p] \quad\) controls the expansion of !PVAL lists for \(\mathrm{fac}(X, Y)\) model terms. For kriging prediction in 2 dimensions \((X, Y)\), the user will typically want to predict at a grid of values, not necessarily just at data combinations. The values at which the prediction is required can be specified separately for \(X\) and \(Y\) using two !PVAL statements. Normally, predict points will be defined for all combinations of \(X\) and \(Y\) values. This qualifier is required (with optional argument 1) to specify the lists are to be taken in parallel. The lists must be the same length if to be taken in parallel.
Be aware that adding two dimensional prediction points is likely to substantially slow iterations because the variance structure is dense and becomes larger. For this reason, ASReml will ignore the extra PVAL points unless either !FINAL or ! GKRIGE are set, to save processing time.

The ! GROUPFACTOR qualifier, like ! SUBSET, must appear on a line by itself after the data line and before the model line. Its purpose is to define a factor \(t\) by merging levels of an existing factor \(v\). The syntax is
!GROUPFACTOR < Group_factor> <Exist_factor> <new codes>
for example
!GROUPFACTOR Year YearLoc 1112233344
forms a new factor Year with 4 levels from the existing factor YearLoc with 10 levels.
Alternatively, Year could be formed by data transformation:
Year * !=YearLoc !set 1112233344 !L 2001200220032004
!IDLIMIT v is used when ASReml expands a residual statement like residual sat(Site).ar1(row).ar1(col) and the dimension of row or col is small. The ar1() structure is changed to id(). When the number of rows/columns is less than or equal to \(v\), the structure is set to ID instead of AR1. \(v\) has a default value of 4 and cannot be reset to less than 3. If the qualifier is not specified the value of \(v\) is 1 .
! JOIN \(\quad\) is used to join lines in plots, see ! X .

\subsection*{5.8 Job control qualifiers}

Table 5.4: List of occasionally used job control qualifiers
qualifier action
\(!\mathrm{MBF} \operatorname{mbf}(v, n) f\)
[!FACTOR ]
[!FIELD \(s\) ]
[! KEY \(k\) ]
[! NOKEY ]
[!RENAME \(t\) ]
[!RFIELD \(r\) ]
[!SKIP \(k\) ]
[!SPARSE ]
specified on a separate line after the datafile line predefines the model term \(\operatorname{mbf}(v, n)\) as a set of \(n\) covariates indexed by the data values in variable \(v\). MBF stands for My Basis Function and uses the same mechanism as the leg(), pol() and spl() model functions but with covariates supplied by the user. It is used for reading in specialized design matrices indexed by a factor in the data including genetic marker covariables. By default, the file \(f\) should contain \(1+n\) fields where the first field, the key field, contains the values which are in the data variable or at which prediction is required, and the remaining \(n\) fields define the corresponding covariate values. If \(n\) is omitted, all fields after the key field, are taken unless !FACTOR is specified for which \(n\) is 1 and the covariate values are treated as coding for a multilevel factor. Set \(n\) to 1 to read just one field form the data file. Also note that the file may be a binary file (e.g. formed in a previous run using ! SAVE). ! RENAME \(t\) changes the name of the the term from \(\operatorname{mbf}(\ldots)\) to the new name \(t\). This is necessary when several \(\mathrm{mbf}(\ldots\) ) terms are being defined which would otherwise have the same name/label. For example
!MBF mbf (entry) mlib/m35.csv !RENAME Marker35
If the key values are the ordered sequence \(1: N\), the key field may be omitted if ! NOKEY is specified. If the key is not in the first field, its location can be specified with ! KEY \(k\). If extracting a single covariate from a large set of covariates in the file, the specific field to extract can be given by !FIELD \(s\) in absolute terms, or relative to the key field by !RFIELD \(r\). For example
!MBF mbf (variety, 1) markers.csv !key 1 !RFIELD 35 !RENAME Marker35
!SKIP \(k\) requests the first \(k\) lines of the file be ignored.
! SPARSE can be used when the covariates are predominately zero. Each key value is followed by as many column, value pairs as required to specifiy the non zero elements of the design for that value of key. The pairs should be arranged in increasing order of column within rows. The rows may be continued on subsequent lines of the file provided incomplete lines end with a COMMA.

This file may now be a binary format file, with file extension . bin indicating 32 bit real binary numbers and .dbl indicating 64bit real binary values. Files with these formats can be easily created in a preliminary run using the !SAVE qualifier. The advantage of using a binary file is that reading the file is much quicker. This is important if the file has many fields and is being accessed repeatedly, for example
```

!CYCLE 1:1000
!MBF mbf(Geno) markers.dbl !key 1 !RFIELD $I !rename M$I
... !r M\$I

```

\subsection*{5.8 Job control qualifiers}

Table 5.4: List of occasionally used job control qualifiers
```

qualifier
action

```
!MVINCLUDE
!MVREMOVE
!NODISPLAY
!PVAL v \(p\)

\section*{Restrictions:}

The key field MUST be numeric. In particular, if the data field it relates to is either an ! A or ! I encoded factor, the original (uncoded) level labels may not specified in the MBF file. Rather the coded levels must be specified. The MBF file is processed before the data file is read in and so the mapping to coded levels has not been defined in ASReml when the MBF file is processed, although the user can/must anticipate what it will be.

\section*{Comment:}

If this MBF process is to be used repeatedly, for example to process a large set of marker variables in conjunction with ! CYCLE, processing will be much faster if the markers variables are in separate files. ASReml will read 10 files containing a single field much faster than reading a single file containing 400 fields, ten times to extract 10 different markers. Also note that the file may be a binary file and will be read much quicker than a formatted file. A binary file may be formed in a previous run using !SAVE.

When missing values occur in the design ASReml will report this fact and abort the job unless !MVINCLUDE is specified (see Section 6.9); then missing values are treated as zeros. Use the !DV transformation to drop the records with the missing values.
instructs ASReml to discard records which have missing values in the design matrix (see Section 6.9).
suppresses the graphic display of the variogram and residuals which is otherwise produced for spatial analyses in the PC version. This option is usually set on the command line using the option letter N (see Section 11.3 on graphics). The text version of the graphics is still written to the .res file.
is a mechanism for specifying the particular points to be predicted for covariates modelled using \(\operatorname{fac}(v), \operatorname{leg}(v, k), \operatorname{spl}(v, k)\) and \(\operatorname{pol}(v, k)\). The points are specified here so that they can be included in the appropriate design matrices. \(v\) is the name of a data field. \(p\) is the list of values at which prediction is required. See ! GKRIGE for special conditions pertaining to \(\mathrm{fac}(x, y)\) prediction.

PVAL \(f\) vlist
is used to read predict_points for several variables from a file \(f\). vlist is the names of the variables having values defined. If the file contains unwanted fields, put the pseudo variate label skip in the appropriate position in vlist to ignore them. The file should only have numeric values. predict_points cannot be specified for design factors.

\subsection*{5.8 Job control qualifiers}

Table 5.4: List of occasionally used job control qualifiers
qualifier action

\section*{!SECTION v}
specifies the variable in the data that defines the data sections. This qualifier enables ASReml to check that sections have been correctly dimensioned. Further, when the model term mv is included in the model and !ROWFACTOR and !COLUMNFACTOR are defined, ASReml will check that the observations in each section form a complete grid; if not the grid will be completed by adding the appropriate extra data records. If only one grid is required from all the data then the !SECTION variable does not need specifying. The following is a basic example assuming 5 sites (sections).
```

Basic multi-envt trial analysis filling out row and column
grid
site 5 \# sites coded 1 ... 5
column * \# columns coded 1 ...
row * \# rows coded 1 ...
variety !A \# variety names
yield
met.dat !SECTION site !ROWFACTOR row !COLUMNFACTOR col
yield ~ site !r variety site.variety !f mv
residual sat(site).ar1(row).ar1(column)

```
\(!\) SPLINE \(\operatorname{spl}(v, n) \quad p \quad\) defines a spline model term with an explicit set of knot points. The basic form of the spline model term, \(\operatorname{spl}(v)\), is defined in Table 6.1 where \(v\) is the underlying variate. The basic form uses the unique data values as the knot points. The extended form is \(\operatorname{spl}(v, n)\) which uses \(n\) knot points. Use this !SPLINE qualifier to supply an explicit set of \(n\) knot points \((p)\) for the model term \(t\). Using the extended form without using this qualifier results in \(n\) equally spaced knot points being used. The ! SPLINE qualifier may only be used on a line by itself after the datafile line and before the model line.

When knot points are explicitly supplied they should be in increasing order and adequately cover the range of the data or ASReml will modify them before they are applied. If you choose to spread them over several lines use a comma at the end of incomplete lines so that ASReml will to continue reading values from the next line of input. If the explicit points do not adequately cover the range, a message is printed and the values are rescaled unless ! NOCHECK is also specified. Inadequate coverage is when the explicit range does not cover the midpoint of the actual range. See ! KNOTS, !PVAL and !SCALE.
reduces the update step sizes of the variance parameters. The default value is the reciprocal of the square root of !MAXIT. It may be set between 0.01 and 1.0. The step size is increased towards 1 each iteration. Starting at 0.1 , the sequence would be \(0.1,0.32,0.56,1\). This option is useful when you do not have good starting values, especially in multivariate analyses.
forms a new group factor \((t)\) derived from an existing group factor \((v)\) by selecting a subset \((p)\) of its variables. A subgroup factor may not be used in a PREDICT or TABULATE directive.

\subsection*{5.8 Job control qualifiers}

Table 5.4: List of occasionally used job control qualifiers
qualifier
action
!SUBSET \(t v p\)
!WMF
forms a new factor \((t)\) derived from an existing factor \((v)\) by selecting a subset \((p)\) of its levels. Missing values are transmitted as missing and records whose level is zero are transmitted as zero. The qualifier occupies its own line after the datafile line but before the linear model. e.g.
!SUBSET EnvC Env 3589 :15 2133
defines a reduced form of the factor Env just selecting the environments listed. It might then be used in the model in an interaction. A subset factor can be used in a TABULATE directive but not in a PREDICT directive.

The intention is to simplify the model specification in MET (Multi Environment Trials) analyses where say Column effects are to be fitted to a subset of environments. It may also be used on the intrinsic factor Trait in a multivariate analysis provided it correctly identifies the number of levels of Trait either by including the last trait number, or appending sufficient zeros. Thus, if the analysis involves 5 traits,
!SUBSET Trewe Trait 13400
sets hardcopy graphics file type to .wmf.

Table 5.5: List of rarely used job control qualifiers
qualifier \(\quad\) action
! AILOADINGS \(i\)
!AISINGULARITIES
controls modification to AI updates of loadings in extended Factor Analytic models. After ASReml calculates updates for variance parameters, it checks whether the updates are reasonable and sometimes reduces them over and above any !STEPSIZE shrinkage. The extra shrinkage has two levels. Loadings that change sign are restricted to doubling in magnitude, and if the average change in magnitude of loadings is greater than 10 -fold, they are all shrunk back.
Unless the user gives constraints, ASReml sets them and rotates the loadings each iteration. When !AILOADINGS \(i\) is specified, it also prevents AI updates of some loadings during the first \(i\) iterations. For \(f(>1)\) factors, only the last factor is estimated (conditional on the earlier ones) in the first \(f-1\) iterations. Then pairs including the last are estimated until iteration \(i\).
If !AILOADINGS is not specified and !CONTINUE is used and initializes the XFA model from a lower order, the \(i\) parameter is set internally.
can be specified to force a job to continue even though a singularity was detected in the Average Information (AI) matrix. The AI matrix is used to give updates to the variance parameter estimates. In release 1, if singularities were present in the AI matrix, a generalized inverse was used which effectively conditioned on whichever parameters were identified as singular. ASReml now aborts processing if such singularities appear unless the ! AISINGULARITIES qualifier is set. Which particular parameter is singular is reported in the variance component table printed in the .asr file.

Table 5.5: List of rarely used job control qualifiers

> qualifier
action

The most common reason for singularities is that the user has overspecified the model and is likely to misinterpret the results if not fully aware of the situation. Overspecification will occur in a direct product of two unconstrained variance matrices (see Section 7.4), when a random term is confounded with a fixed term and when there is no information in the data on a particular component.
Another common cause is when fitting an animal model and there is excessive sire/dam variance (so that heritability from a sire model would exceed 1) so that the residual variance under the animal model has approached zero. In this case the data contradicts the assumptions of the animal model.
The best solution is to reform the variance model so that the ambiguity is removed, or to fix one of the parameters in the variance model so that the model can be fitted. Only rarely will it be reasonable to specify the ! AISINGULARITIES qualifier.
sets hardcopy graphics file type to .bmp.
suppresses some of the information written to the .asr file. The data summary and regression coefficient estimates are suppressed. This qualifier should not be used for initial runs of a job until the user has confirmed from the data summary that the data is correctly interpreted by ASReml. Use ! BRIEF 2 to cause the predicted values to be written to the .asr file instead of the .pvs file. Use !BRIEF -1 to get BLUE (fixed effect) estimates reported in .asr file. The ! BRIEF qualifier may be set with the B command line option.
is used to calculate the effects reported in the .sln file without calculating any derived quantities such as predicted values or updated variance parameters. For argument values 1:3, ASReml solves for the effects directly while for values \(4: 19\) it solves the mixed model equations by iteration, allowing larger models to be fitted. With direct solution, the estimation REML iteration routine is aborted after
\(n=1\) : forming the estimates of the vector of fixed and random effects by matrix inversion,
\(n=2\) : forming the estimates of the vector of fixed and random effects, REML log-likelihood and residuals (this is the default),
\(n=3\) : forming the estimates of the vector of fixed and random effects, REML log-likelihood, residuals and inverse coefficient matrix.
For arguments 4, 10:19, ASReml forms the mixed model equations and solves them iteratively to obtain solutions for the fixed and random effects. The options are:
\(n=4\) : forming the estimates of the vector of fixed and random effects using the Preconditioned Conjugate Gradient (PCG) Method (Mrode, 2005),

Table 5.5: List of rarely used job control qualifiers
qualifier action
\(n=10: 19\) forming the estimates of the vector of fixed and random effects by Gauss-Seidel iteration of the mixed model equations, with relaxation factor \(n / 10\),
The default maximum number of iterations is 12000 . This can be reset by supplying a value greater than 100 with the !MAXIT qualifier in conjunction with the ! BLUP qualifier. Iteration stops when the average squared update divided by the average squared effect is less than \(1 e^{-10}\). Gauss-Seidel iteration is generally much slower than the PCG method.
ASReml prints its standard reports as if it had completed the iteration normally, but since it has not completed it, some of the information printed will be incorrect. In particular, variance information on the variance parameters will always be unavailable. Standard errors on the estimates will be wrong unless \(n=3\). Residuals are not available if \(n=1\). Use of \(n=3\) or \(n=2\) will halve the processing time when compared to the alternative of using !MAXIT 1 rather than a !tt !BLUP \(n\) qualifier. However, ! MAXIT 1 does result in complete and correct output.
!DENSE \(n\)
!DF \(n\)
sets the number of equations solved densely up to a maximum of 5000 . By default, sparse matrix methods are applied to the random effects and any fixed effects listed after random factors or whose equation numbers exceed 800. Use ! DENSE \(n\) to apply sparse methods to effects listed before the \(!r\) (reducing the size of the DENSE block) or if you have large fixed model terms and want Wald F statistics calculated for them. Individual model terms will not be split so that only part is in the dense section. \(n\) should be kept small \((<100)\) for faster processing.
alters the error degrees of freedom from \(\nu\) to \(\nu+n\). This qualifier might be used when analysing pre-adjusted data to reduce the degrees of freedom ( \(n\) negative) or when weights are used in lieu of actual data records to supply error information ( \(n\) positive). The degrees of freedom is only used in the calculation of the residual variance in a univariate single site analysis. The option will have no effect in analyses with multiple error variances (for sites or traits) other than in the reported degrees of freedom. Use ! ADJUST \(r\) rather than !DF \(n\) if \(r\) is not a whole number. Use with ! YSS \(r\) to supply variance when data fully fitted.

\subsection*{5.8 Job control qualifiers}

Table 5.5: List of rarely used job control qualifiers
qualifier action
!EMFLAG \(n\)
!PXEM \(n\)
requests ASReml use Expectation-Maximization (EM) rather than Average Information (AI) updates when the AI updates would make a US structure non-positive definite. This only applies to US structures and is still under development. When !GP is associated with a US structure, ASReml checks whether the updated matrix is positive definite (PD). If not, it replaces the AI update with an EM update. If the non PD characteristic is transitory, then the EM update is only used as necessary. If the converged solution would be non PD, there will be a EM update each iteration even though !EM is omitted.
EM is notoriously slow at finding the solution and ASReml includes several modified schemes, discussed by Cullis et al. (2004), particularly relevant when the AI update is consistently outside the parameter space. These include optionally performing extra local EM or PXEM (Parameter Expanded EM) iterates. These can dramatically reduce the number of iterates required to find a solution near the boundary of the parameter space but do not always work well when there are several matrices on the boundary. The options are
```

!EMFLAG [1] Standard EM plus }10\mathrm{ local EM steps
!EMFLAG 2 Standard EM plus 10 local PXEM steps
!PXEM [2] Standard EM plus 10 local PXEM steps
! EMFLAG 3 Standard EM plus }10\mathrm{ local EM steps
!EMFLAG 4 Standard EM plus }10\mathrm{ local EM steps
!EMFLAG 5 Standard EM only
!EMFLAG }6\mathrm{ Single local PXEM
! EMFLAG }7\mathrm{ Standard EM plus 1 local EM step
!EMFLAG }8\mathrm{ Standard EM plus 10 local EM steps

```

Options 3 and 4 cause all US structures to be updated by (PX)EM if any particular one requires EM updates.
The test of whether the AI updated matrix is positive definitite is based on absorbing the matrix to check all pivots are positive. Repeated EM updates may bring the matrix closer to being singular. This is assessed by dividing the pivot of the first element with the first diagonal element of the matrix. If it is less than \(10^{-7}\) (this value is consistent with the multiple partial correlation of the first variable with the rest being greater than 0.9999999, ASReml fixes the matrix at that point and estimates any other parameters conditional on these values. To preceed with further iterations without fixing the matrix values would ultimately make the matrix such that it would be judged singular resulting the analysis being aborted.

\subsection*{5.8 Job control qualifiers}

Table 5.5: List of rarely used job control qualifiers
qualifier action
!EQORDER o
!EXTRA \(n\)
!FOWN
modifies the algorithm used for choosing the order for solving the mixed model equations. A new algorithm devised for release 2 is now the default and is formally selected by !EQORDER 3. The algorithm used for release 1 is essentially that selected by ! EQORDER 1 . The new order is generally superior. ! EQORDER -1 instructs ASReml to process the equations in the order they are specified in the model. Generally this will make a job much slower, if it can run at all. It is useful if the model has a suitable order as in the IBD model
Y \(\sim \operatorname{mu}\) !r ! \{ giv(id) id !\}
giv(id) invokes a dense inverse of an IBD matrix and id has a sparse structured inverse of an additive relationship matrix. While ! EQORDER 3 generates a more sparse solution, !EQORDER -1 runs faster.
forces another \(\bmod (n, 10)\) rounds of iteration after apparent convergence. The default for \(n\) is 1 . This qualifier has lower priority than !MAXIT and ABORTASR.NOW (see !MAXIT for details).
Convergence is judged by changes in the REML log-likelihood value and variance parameters. However, sometimes the variance parameter convergence criteria has not been satisfied.
allows the user to specify the test reported in the F-con column of the Wald F Statistics table. It has the form
!FOWN terms to test ; background terms
placed on a separate line immediately after the model line. Multiple ! FOWN statements should appear together. It generates a Wald F statistic for each model term in terms to test which tests its contribution after all other terms in terms to test and background terms, conditional on all terms that appear in the SPARSE equations. It should only specify terms which will appear in the table of Wald F statistics.

For example,
! FOWN A B C ; mu
! FOWN A.B B.C A.C ; mu A B C
! FOWN A.B.C ; mu A B C A.B B.C A.C
would request the Wald F statistics based on (see page 19)
\(R(\mathrm{~A} \mid \mathrm{mu}\) B C sparse),
\(R(\mathrm{~B} \mid \mathrm{mu} \mathrm{A} \mathrm{C}\) sparse),
\(R\) (C | mu A B sparse),
\(R(\mathrm{~A} . \mathrm{B} \mid \mathrm{mu} \mathrm{A}\) B C B.C A.C sparse), \(R(\mathrm{~B} . \mathrm{C} \mid \mathrm{mu} A \mathrm{~B} C \mathrm{~A} . \mathrm{B}\) A.C sparse), \(R(\) A.C \(\mid\) mu A B C A.B B.C sparse) and \(R(\) A.B.C \(\mid\) mu A B C A.B A.C B.C sparse).

Table 5.5: List of rarely used job control qualifiers

> qualifier
action
! GDENSE
! GLMM \([n]\)
!HPGL [2]
! HOLD [list]

\section*{Warnings:}
- For computational convenience, ASReml calculates !FOWN tests using a full rank parameterization of the fitted model with rank (numerator degrees of freedom, NumDF) of terms generated by the incremental Wald F tests.
- Unfortunately, if some terms in the implicit model defined by the requested ! FOWN test would have more or less NumDF than are present in the full rank parameterization because aliased effects are reordered, it can not be calculated correctly from the full rank parameterization. In this case ASReml reverts to the 'conditional' test but identifies the terms that need to be reordered in the fitted model to obtain the ! FOWN test(s) specified. It is necessary to rerun ASReml after reordering these terms to obtain the ! FOWN test(s) specified. Several reruns may be needed to perform all ! FOWN tests specified.
- Any model terms in the ! FOWN lists which do not appear in the actual model, are ignored without flagging an error.
- Any model terms which are omitted from !FOWN statements are tested with the usual conditional test.
- If any model terms are listed twice, only the first test is performed. F-con tests specified in ! FOWN statements are given model codes \(0, \mathrm{P}, \ldots\).

The !FOWN statements are parsed by the routine that parses the model line and so accepts the same model syntax options. Care should be taken to ensure term names are spelt exactly as they appear in the model.
is used to have the first random term included in the dense equations if it is a GRM/GIV variance structure. This will result in faster processing when the GRM (inverse) matrix is not sparse.
sets the number of inner iterations performed when a iteratively weighted least squares analysis is performed. Inner iterations are iterations to estimate the effects in the linear model for the current set of variance parameters. Outer iterations are the AI updates to the variance parameters. The default is to perform 4 inner iterations in the first round and 2 in subsequent rounds of the outer iteration. Set \(n\) to 2 or more to increase the number of inner iterations.
sets hardcopy graphics file type to HP GL. An argument of 2 sets the hardcopy graphics file type to HP GL 2
allows the user to temporarily fix the parameters listed. Parameter numbers have been added to the reporting of input values to facilitate use of this and other parameter number dependent qualifiers. The list should be in increasing order using colon to indicate a sequence, step size is 1 . For example !HOLD 1:20 30:40.

\subsection*{5.8 Job control qualifiers}

Table 5.5: List of rarely used job control qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & action \\
\hline \[
\text { !LAST }<\text { factor }_{1}
\] & \begin{tabular}{l}
\(<\) fac \(_{2}><\operatorname{lev}_{2}><\) fac \(\left._{3}><\operatorname{lev}_{3}>\right]\) \\
limits the order in which equations are solved in ASReml by forcing equations in the sparse partition involving the first \(\left\langle\operatorname{lev}_{i}\right\rangle\) equations of \(<\) factor \(_{i}>\) to be solved after all other equations in the sparse partition. It is intended for use when there are multiple fixed terms in the sparse equations so that ASReml will be consistent in which effects are identified as singular. The test example had \\
!r Anim Litter !f HYS \\
where genetic groups were included in the definition of Anim. \\
Consequently, there were 5 singularities in Anim. The default reordering allows those singularities to appear anywhere in the Anim and HYS terms. Since 29 genetic groups were defined in Anim, !LAST Anim 29 forces the genetic group equations to be absorbed last (and therefore incorporate any singularities). In the more general model fitting \\
!r Tr.Anim Tr.Lit !f Tr. HYS \\
without ! LAST, the location of singularities will almost surely change if the G structures for Tr . Anim or Tr . Lit are changed, invalidating Likelihood Ratio tests between the models.
\end{tabular} \\
\hline ! OUTLIER & performs the outlier check described on page 17. This can have a large time penalty in large models. \\
\hline ! OWN \(f\) & supplies the name of a program supplied by the user in association with the OWN variance model (page 127). \\
\hline !PRINT \(n\) & \begin{tabular}{l}
causes ASReml to print the transformed data file to basename.asp. If \(n<0\), data fields \(1 \ldots \bmod (n)\) are written to the file, \\
\(n=0\), nothing is written, \\
\(n=1\), all data fields are written to the file if it does not exist, \(n=2\), all data fields are written to the file overwriting any previous contents, \(n>2\), data fields \(n \ldots t\) are written to the file where \(t\) is the last defined column.
\end{tabular} \\
\hline ! PNG & sets hardcopy graphics file type to . png. \\
\hline ! PS & sets hardcopy graphics file type to .ps. \\
\hline !PVSFORM \(n\) & \begin{tabular}{l}
modifies the format of the tables in the .pvs file and changes the file extension of the file to reflect the format. \\
! PVSFORM 1 is TAB separated: .pvs \(\rightarrow\) _pvs.txt \\
!PVSFORM 2 is COMMA separated: .pvs \(\rightarrow\) _pvs.csv \\
!PVSFORM 3 is Ampersand separated: .pvs \(\rightarrow\) _pvs.tex \\
See ! TXTFORM for more detail.
\end{tabular} \\
\hline !RESIDUALS [2] & instructs ASReml to write the transformed data and the residuals to a binary file. The residual is the last field. The file basename.srs is written in single precision unless the argument is 2 in which case basename.drs is written in double precision. Factor names are held in a .vll file: see !SAVE below. \\
\hline
\end{tabular}

\subsection*{5.8 Job control qualifiers}

\section*{Table 5.5: List of rarely used job control qualifiers}
qualifier
action
!SAVE \(n\)
!SCREEN \([n][!\) SMX \(m]\)
!SLNFORM \([n]\)

The file will not be written from a spatial analysis (two-dimensional error) when the data records have been sorted into field order because the residuals are not in the same order that the data is stored. The residual from a spatial analysis will have the units part added to it when units is also fitted. The .drs file could be renamed (with extension .dbl) and used for input in a subsequent run.
instructs ASReml to write the data to a binary file. The file asrdata.bin is written in single precision if the argument \(n\) is 1 or 3 ; asrdata.dbl is written in double precision if the argument \(n\) is 2 or 4; the data values are written before transformation if the argument is 1 or 2 and after transformation if the argument is 3 or 4. The default is single precision after transformation (see Section 4.2).

When either !SAVE or !RESIDUALS is specified, ASReml saves the factor level labels to a basename.vll and attempts to read them back when data input is from a binary file. Note that if the job basename changes between runs, the .vll file will need to be copied to the new basename. If the .vll file does not match the factor structure (i.e. the same factors in the same order), reading the .vll file is aborted.
performs a 'Regression Screen', a form of all subsets regression. For \(d\) model terms in the DENSE equations, there are \(2^{d}-1\) possible submodels. Since for \(d>8,2^{d}-1\) is large, the submodels explored are reduced by the parameters \(n\) and \(m\) so that only models with at least \(n\) (default 1) terms but no more than \(m\) (default 6 ) terms are considered. The output (see page 222) is a report to the . asr file with a line for every submodel showing the sums of squares, degrees of freedom and terms in the model. There is a limit of \(d=20\) model terms in the screen. ASReml will not allow interactions to be included in the screened terms. For example, to identify which three of my set of 12 covariates best explain my dependent variable given the other terms in the model, specify !SCREEN 3 !SMX 3. The number of models evaluated quickly increases with \(d\) but ASReml has an arbitrary limit of 900 submodels evaluated. Use the !DENSE qualifier to control which terms are screened. The screen is conditional on all other terms (those in the SPARSE equations) being present.
modifies the format of the . sln file.
! SLNFORM -1 prevents the .sln file from being written.
! SLNFORM 1 is TAB separated: . \(\operatorname{sln}\) becomes \(\operatorname{sln}\).txt
!SLNFORM 2 is COMMA separated: .sln becomes _sln.csv
!SLNFORM 3 is Ampersand separated: .sln becomes _sln.tex
Note that, extra signifcant digits are reported when !SLNFORM is set, and expanded labelling of the levels in interactions is used because field width is no longer restricted. See !TXTFORM for more detail.
!SPATIAL
increases the amount of information reported on the residuals obtained from the analysis of a two dimensional regular grid field trial. The information is written to the .res file.

\subsection*{5.8 Job control qualifiers}

Table 5.5: List of rarely used job control qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & action \\
\hline \multirow[t]{5}{*}{!TABFORM \([n]\)} & controls form of the .tab file \\
\hline & !TABFORM 1 is TAB separated: .tab becomes _tab.txt \\
\hline & !TABFORM 2 is COMMA separated: .tab becomes _tab.csv \\
\hline & !TABFORM 3 is Ampersand separated: .tab becomes _tab.tex \\
\hline & See ! TXTFORM for more detail. \\
\hline \multirow[t]{3}{*}{!TXTFORM \([n]\)} & sets the default argument for !PVSFORM, !SLNFORM, !TABFORM and ! YHTFORM if these are not explicitly set. !TXTFORM (or !TXTFORM 1) replaces multiple spaces with TAB and changes the file extension to, say, _sln.txt. This makes it easier to load the solutions into Excel. !TXTFORM 2 replaces multiple spaces with COMMA and changes the file extension to, say, _sln.csv. However, since factor labels sometimes contain COMMAS, this form is not so convenient. \\
\hline & !TXTFORM 3 replaces multiple spaces with Ampersand, appends a double backslash to each line and changes the file extension to say _sln.tex (Latex style). \\
\hline & Additional significant digits are reported with these formats. Omitting the qualifier means the standard fixed field format is used. For .yht and .sln files, setting \(n\) to -1 means the file is not formed. \\
\hline ! TWOWAY & modifies the appearance of the variogram calculated from the residuals obtained when the sampling coordinates of the spatial process are defined on a lattice. The default form is based on absolute 'distance' in each direction. This form distinguishes same sign and different sign distances and plots the variances separately as two layers in the same figure. \\
\hline \multirow[t]{2}{*}{! VCC \(n\)} & \\
\hline & The constraint lines occur after the G structures are defined. The constraints are described in Section 7.8.2. The variance header line (structural specification) or residual line (Section 6.2) must be present, even if only 000 or residual units indicating there are no explicit R or G structures (see Section 7.8.2). \\
\hline \multirow[t]{2}{*}{! VGSECTORS [s]} & requests that the variogram formed with radial coordinates (see page 18) be based on \(s(4,6\) or 8\()\) sectors of size \(180 / s\) degrees. The default is 4 sectors if !VGSECTORS is omitted and 6 sectors if it is specified without an argument. The first sector is centred on the \(X\) direction. \\
\hline & Figure 5.1 is the variogram using radial coordinates obtained using predictors of random effects fitted as fac (xsca,ysca). It shows low semivariance in xsca direction, high semivariance in the ysca direction with intermediate values in the 45 and 135 degrees directions. \\
\hline \multirow[t]{4}{*}{! YHTFORM \([f]\)} & controls the form of the . yht file \\
\hline & ! YHTFORM - 1 suppresses formation of the . yht file \\
\hline & ! YHTFORM 1 is TAB separated: . yht becomes _yht.txt \\
\hline & ! YHTFORM 2 is COMMA separated: . yht becomes _yht.csv \\
\hline ! YSS \([r]\) & ! YHTFORM 3 is Ampersand separated: .yht becomes -yht.tex adds \(r\) to the total Sum of Squares. This might be used with ! DF to add some variance to the analysis when analysing summarised data. \\
\hline
\end{tabular}

Table 5.5: List of rarely used job control qualifiers
```

qualifier
action

```


Figure 5.1: Variogram in 4 sectors for Cashmore data
Table 5.6: List of very rarely used job control qualifiers
\begin{tabular}{ll}
\hline qualifier & action \\
\hline !CINV \(n\) & \begin{tabular}{l} 
prints the portion of the inverse of the coefficient matrix pertaining to \\
the \(n^{\text {th }}\) term in the linear model. Because the model has not been defined \\
when ASReml reads this line, it is up to the user to count the terms in \\
the model to identify the portion of the inverse of the coefficient matrix \\
to be printed. The option is ignored if the portion is not wholly in the \\
SPARSE stored equations. The portion of the inverse is printed to a file \\
with extension . cii The sparse form of the matrix only is printed in \\
the form \(i j C^{i j}\), that is, elements of \(C^{i j}\) that were not needed in the \\
estimation process are not included in the file.
\end{tabular} \\
!FACPOINTS n \(n\) & \begin{tabular}{ll} 
affects the number of distinct points recognised by the fac () model func- \\
tion (Table 6.1\(). ~ T h e ~ d e f a u l t ~ v a l u e ~ o f ~\)
\end{tabular}\(n\) is 1000 so that points closer than \\
& \(0.1 \%\) of the range are regarded as the same point.
\end{tabular}

\subsection*{5.8 Job control qualifiers}

Table 5.6: List of very rarely used job control qualifiers
qualifier action
!KNOTS \(n\)

NOCHECK
! NOREORDER
! NOSCRATCH
!POLPOINTS \(n\)
!PPOINTS \(n\)
! REPORT
!SCALE 1
!SCORE
changes the default knot points used when fitting a spline to data with more than \(n\) different values of the spline variable. When there are more than \(n\) (default 50) points, ASReml will default to using \(n\) equally spaced knot points.
forces ASReml to use any explicitly set spline knot points (see !SPLINE) even if they do not appear to adequately cover the data values.
prevents the automatic reversal of the order of the fixed terms (in the dense equations) and possible reordering of terms in the sparse equations.
forces ASReml to hold the data in memory. ASReml will usually hold the data on a scratch file rather than in memory. In large jobs, the system area where scratch files are held may not be large enough. A Unix system may put this file in the /tmp directory which may not have enough space to hold it.
affects the number of distinct points recognised by the pol() model function (Table 6.1). The default value of \(n\) is 1000 so that points closer than \(0.1 \%\) of the range are regarded as the same point.
influences the number of points used when predicting splines and polynomials. The design matrix generated by the leg(), pol() and spl() functions are modified to include extra rows that are accessed by the PREDICT directive. The default value of \(n\) is 21 if there is no !PPOINTS qualifier. The range of the data is divided by \(n-1\) to give a step size \(i\). For each point \(p\) in the list, a predict point is inserted at \(p+i\) if there is no data value in the interval \([p, p+1.1 \times i]\). ! PPOINTS is ignored if !PVAL is specified for the variable. This process also effects the number of levels identified by the fac() model term.
forces ASReml to attempt to produce the standard output report when there is a failure of the iteration algorithm. Usually no report is produced unless the algorithm has at least produced estimates for the fixed and random effects in the model. Note that residuals are not included in the output forced by this qualifier. This option is primarily intended to help debugging a job that is not converging properly.

When forming a design matrix for the spl() model term, ASReml uses a standardized scale (independent of the actual scale of the variable). The qualifier !SCALE 1 forces ASReml to use the scale of the variable. The default standardised scale is appropriate in most circumstances.
requests ASReml write the SCORE vector and the Average Information matrix to files basename. SCO and basename.AIM. The values written are from the last iteration.

\subsection*{5.8 Job control qualifiers}

Table 5.6: List of very rarely used job control qualifiers
qualifier action
reduces the update step sizes of the variance parameters more persistently than the !STEP \(r\) qualifier. If specified, ASReml looks at the potential size of the updates and if any are large, it reduces the size of \(r\). If \(n\) is greater than 10 ASReml also modifies the Information matrix by multiplying the diagonal elements by \(n\). This has the effect of further reducing the updates. In the iteration subroutine, if the calculated \(\log \mathrm{L}\) is more than 1.0 less than the LogL for the previous iteration and !SLOW is set and NIT \(>1\), ASReml immediately moves the variance parameters back towards the previous values and restarts the iteration.
! TOLERANCE \(\left[s_{1}\left[s_{2}\right]\right]\)
!VRB
modifies the ability of ASReml to detect singularities in the mixed model equations. This is intended for use on the rare occasions when ASReml detects singularities after the first iteration; they are not expected.
Normally (when no !TOLERANCE qualifier is specified), a singularity is declared if the adjusted sum of squares of a covariable is less than a small constant \((\eta)\) or less than the uncorrected sum of squares \(\times \eta\), where \(\eta\) is \(10^{-8}\) in the first iteration and \(10^{-10}\) thereafter. The qualifier scales \(\eta\) by \(10^{s_{i}}\) for the the first or subsequent iterations respectively, so that it is more likely an equation will be declared singular. Once a singularity is detected, the corresponding equation is dropped (forced to be zero) in subsequent iterations. If neither argument is supplied, 2 is assumed. If the second argument is omitted, it is given the value of the first.

If the problem of later singularities arises because of the low coefficient of variation of a covariable, it would be better to centre and rescale the covariable. If the degrees of freedom are correct in the first iteration, the problem will be with the variance parameters and a different variance model (or variance constraints) is required.
requests writing of .vrb file. Previously, the default was to write the file.

\section*{6 Command file: Specifying the terms in the mixed model}

\subsection*{6.1 Introduction}

The linear mixed model is specified in ASReml as a series of model terms and qualifiers. In this and the following chapter we discuss a functional specification of mixed models in ASReml. This chapter describes the model formula syntax for traditional variance component models.

From Chapter 2, the linear mixed model can be written as
\[
\begin{equation*}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\tau}+\boldsymbol{Z} \boldsymbol{u}+\boldsymbol{e} \tag{6.1}
\end{equation*}
\]
where \(\boldsymbol{y}(n \times 1)\) is a vector of observations, \(\boldsymbol{\tau}(p \times 1)\) is a vector of fixed effects, \(\boldsymbol{X}(n \times p)\) is the design matrix of full column rank that associates observations with the appropriate combination of fixed effects, \(\boldsymbol{u}(q \times 1)\) is a vector of random effects, \(\boldsymbol{Z}(n \times q)\) is the design matrix that associates observations with the appropriate combination of random effects, and \(\boldsymbol{e}(n \times 1)\) is the vector of residual errors.

Typically, \(\boldsymbol{\tau}\) and \(\boldsymbol{u}\) are composed of several model terms, that is, \(\boldsymbol{\tau}\) can be partitioned as \(\boldsymbol{\tau}=\left[\boldsymbol{\tau}_{1}^{\top} \ldots \boldsymbol{\tau}_{t}^{\top}\right]^{\top}\) and \(\boldsymbol{u}\) can be partitioned as \(\boldsymbol{u}=\left[\boldsymbol{u}_{1}^{\top} \ldots \boldsymbol{u}_{b}^{\top}\right]^{\top}\), with \(\boldsymbol{X}\) and \(\boldsymbol{Z}\) partitioned conformably as \(\boldsymbol{X}=\left[\boldsymbol{X}_{1} \ldots \boldsymbol{X}_{t}\right]\) and \(\boldsymbol{Z}=\left[\boldsymbol{Z}_{1} \ldots \boldsymbol{Z}_{b}\right]\).

In this chapter we concentrate on specification of the fixed and random effects and their associated design matrices. For ease of exposition, we assume variance component mixed models (Example 2.2). In these models, the random effects (within model terms) and the residual errors are assumed to be identically and independently distributed (IID). This means they have a common variance and zero covariance. In these variance component models, a functional specification is relatively simple and we discuss this here. In Chapter 7 we present a more general functional specification of random effects and variance structures.

\subsection*{6.2 Specifying model formulae in ASReml}

The linear mixed model is specified in ASReml as a series of model terms and qualifiers. Model terms include factor and variate labels (Section 5.4), functions of labels, special terms and interactions of these. The model is specified immediately after the datafile and any job control qualifier and/or tabulate lines. The syntax for specifying the model is
```

NIN Alliance Trial 1989
variety
column 11
nin89.asd !skip 1
yield ~ mu variety !r idv(repl),
If mv
residual idv(units)

```
response [qualifiers ] \(\sim\) fixed [!r conrandom ][!f sparse_fixed ]
[residual conresidual]
- response is the label for the response variable(s) to be analysed; multivariate analysis is discussed in Chapter 8,
- qualifiers allow for weighted analysis (Section 6.7) and Generalized Linear Models (Section 6.8),
- ~ is read as 'modelled as' and separates response from the list of fixed and random terms in the linear mixed model,
- fixed represents the list of primary fixed explanatory terms, that is, variates, factors, interactions and special terms for which Wald F statistics are required. See Table 6.1 for a brief definition of reserved model terms, operators and commonly used functions. The full definition is in Section 6.6,
- conrandom represents the list of consolidated model terms (see Chapter 7) specifying both random effects and variance structures. In this chapter the consolidated model terms are of the form idv() with arguments being the explanatory terms to be fitted as random effects, see Table 6.1 and Section 6.6. Specifying idv (term) indicates that the term effects are IID distributed with a common variance,
- sparse_fixed are additional fixed terms not included in the table of Wald F statistics,
- the residual statement allows specification of the residual error variance structure,
- conresidual is the list of residual consolidated terms (see Chapter 7) specifying both random effects and variance structures. In this chapter we are assuming that the residual errors are IID. Hence the specification idv(units) in the code box, where units is the reserved word specifying a factor with a level for every experimental unit.

\subsection*{6.2.1 General rules}

The following general rules apply in specifying the linear mixed model

\subsection*{6.2 Specifying model formulae in ASReml}
- all elements in the model must be space separated,
- the character \(\sim(\) 'modelled as') separates the response variables(s) from the explanatory variables in the model,
- elements in the model may be separated by + which is ignored except when it is at the end of a line which implies the model continues onto the next line; the + sign must appear on the first line of the model statement when the model statement is written over several lines.
- data fields are identified in the model by their labels
- labels are case sensitive,
- labels may be abbreviated (truncated) when used in the model line but care must be taken that the truncated form is not ambiguous. If the truncated form matches more than one label, the term associated with the first match is assumed,
For example, dens is an abbeviation for density but spl (dens,7) is a different model term to spl(density,7) because it does not represent a simple truncation.
- model terms may only appear once in the model line; repeated occurrences are ignored,
- model terms other than the original data fields are defined the first time they appear on the model line. They may be abbreviated (truncated) if they are referred to again provided no ambiguity is introduced.

Important It is often clearer if labels are not abbreviated. If abbreviations are used then they need to be chosen to avoid confusion.
- if the model is written over several lines, all but the final line must end with a comma (or + ) to indicate that the list is continued.

In Tables 6.1 and 6.2, the arguments in model term functions are represented by the following symbols
\(f\) - the label of a data variable defined as a model factor,
\(k, n-\) an integer number,
\(r\) - a real number,
\(t\) - a model term label (includes data variables),
\(v, y\) - the label of a data variable,
Where a model term takes another model term as an argument, the argument may occasionally need to be predefined. This is done by including the argument model term in the

\subsection*{6.2 Specifying model formulae in ASReml}
model term list with a leading '-' which will cause the term to be defined but not fitted. For example

Trait.male -Trait.female and(Trait.female)

\subsection*{6.2 Specifying model formulae in ASReml}

Table 6.1: Summary of reserved words, operators and functions
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
model \\
term
\end{tabular}} & brief description & \multicolumn{2}{|l|}{common usage} \\
\hline & & & fixed & random \\
\hline reserved & mu & the constant term or intercept & \(\sqrt{ }\) & \\
\hline \multirow[t]{3}{*}{terms} & mv & a term to estimate missing values & \(\sqrt{ }\) & \\
\hline & Trait & multivariate counterpart to mu & \(\sqrt{ }\) & \\
\hline & units & forms a factor with a level for each experimental unit & & \(\sqrt{ }\) \\
\hline \multirow[t]{7}{*}{operators} & . or : & placed between labels to specify an interaction & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline & / & forms nested expansion (Section 6.5) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline & * & forms factorial expansion (Section 6.5) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline & - & placed before model terms to exclude them from the model & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline & , & placed at the end of a line to indicate that the model specification continues on the next line & & \\
\hline & + & treated as a space & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline & \[
\begin{aligned}
& !\{\cdots \\
& !\}
\end{aligned}
\] & placed around some model terms when it is important the terms not be reordered (Section 6.4) & & \(\sqrt{ }\) \\
\hline \multirow[t]{6}{*}{commonly used functions} & at ( \(f, n\) ) & condition on level \(n\) of factor \(f\). \(n\) may be a list of level numbers & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline & at (f) & forms conditioning covariables for all levels of factor \(f\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline & \(\mathrm{fac}(v)\) & forms a factor from \(v\) with a level for each unique value in \(v\) & & \(\sqrt{ }\) \\
\hline & \(\mathrm{fac}(v, y)\) & forms a factor with a level for each combination of values in \(v\) and \(y\) & & \(\sqrt{ }\) \\
\hline & \(\operatorname{lin}(f)\) & forms a variable from the factor \(f\) with values equal to \(1 \ldots n\) corresponding to level \((1) \ldots \operatorname{level}(n)\) of the factor & \(\sqrt{ }\) & \\
\hline & \(\operatorname{spl}(v[, k])\) & forms the design matrix for the random component of a cubic spline for variable \(v\) & & \(\sqrt{ }\) \\
\hline \multirow[t]{4}{*}{other functions} & \[
\begin{gathered}
t\{n\} \\
t[n]
\end{gathered}
\] & fits variable \(n\) from the ! G set of variables \(t\). This is a special case of the ! SUBGROUP qualifier function applied to !G variables. Note that the square parentheses are permitted alternative syntax. & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline & abs (v) & forms the absolute value of the variable \(v\) & & \\
\hline & and ( \(t[, r]\) ) & adds \(r\) times the design matrix for model term \(t\) to the previous design matrix; \(r\) has a default value of 1.predefine it by saying \(-t\) and \((t, r)\) & & \(\sqrt{ }\) \\
\hline & \(c(f)\) & factor \(f\) is fitted with sum to zero constraints & \(\sqrt{ }\) & \\
\hline
\end{tabular}

Table 6.1: Summary of reserved words, operators and functions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{model term} & \multirow[t]{2}{*}{brief description} & \multicolumn{2}{|l|}{common usage} \\
\hline & & fixed & random \\
\hline \(\cos (v, r)\) & forms cosine from \(v\) with period \(r\) & \(\checkmark\) & \\
\hline \(\mathrm{ge}(f)\) & condition on factor/variable \(f>=r\) & \(\checkmark\) & \\
\hline \(\operatorname{giv}(f, n)\) & associates the \(n\)th .giv G-inverse with the factor \(f\) & & \(\checkmark\) \\
\hline \(\operatorname{grm}(f, n)\) & associates the \(n\)th .grm G with the factor \(f\) & & \(\checkmark\) \\
\hline \(\mathrm{gt}(f)\) & condition on factor/variable \(f>r\) & \(\checkmark\) & \\
\hline \(\mathrm{h}(f)\) & factor \(f\) is fitted Helmert constraints & \(\checkmark\) & \\
\hline ide (f) & fits pedigree factor \(f\) without relationship matrix & & \(\checkmark\) \\
\hline \(\operatorname{inv}(v[, r])\) & forms reciprocal of \(v+r\) & \(\checkmark\) & \\
\hline \(\mathrm{le}(f)\) & condition on factor/variable \(f<=r\) & \(\checkmark\) & \\
\hline \(\operatorname{leg}(v,[-] n)\) & forms \(n+1\) Legendre polynomials of order 0 (intercept), 1 (linear)...n from the values in \(v\); the intercept polynomial is omitted if \(v\) is preceded by the negative sign. & \(\checkmark\) & \\
\hline \(1 \mathrm{t}(f)\) & condition on factor/variable \(f<r\) & \(\checkmark\) & \\
\hline \(\log (v[, r])\) & forms natural logarithm of \(v+r\) & \(\checkmark\) & \\
\hline ma1(f) & constructs MA1 design matrix for factor \(f\) & & \(\checkmark\) \\
\hline ma1 & forms an MA1 design matrix from plot numbers & & \(\checkmark\) \\
\hline mbf ( \(v, r\) ) & is a factor derived from data factor \(v\) by using the ! MBF qualifier. & \(\checkmark\) & \(\checkmark\) \\
\hline out (n) & condition on observation \(n\) & \(\checkmark\) & \\
\hline out ( \(n, t\) ) & condition on record \(n\), trait \(t\) & \(\checkmark\) & \\
\hline \(\operatorname{pol}(v,[-] n)\) & forms \(n+1\) orthogonal polynomials of order 0 (intercept), 1 (linear)... \(n\) from the values in \(v\); the intercept polynomial is omitted if \(n\) is preceded by the negative sign. & \(\checkmark\) & \\
\hline \(\operatorname{pow}(x, p[, o\) ) & )defines the covariable \((x+o)^{p}\) for use in the model where \(x\) is a variable in the data, \(p\) is a power and \(o\) is an offset. & \(\checkmark\) & \\
\hline qtl \((f, p)\) & impute a covariable from marker map information at position \(p\) & \(\checkmark\) & \\
\hline \(\sin (v, r)\) & forms sine from \(v\) with period \(r\) & \(\checkmark\) & \\
\hline \(\operatorname{sqrt}(v[, r])\) & forms square root of \(v+r\) & \(\checkmark\) & \\
\hline uni ( \(f\) ) & forms a factor with a level for each record where factor \(f\) is non-zero & & \(\checkmark\) \\
\hline
\end{tabular}

\subsection*{6.2 Specifying model formulae in ASReml}

Table 6.1: Summary of reserved words, operators and functions
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
model \\
term
\end{tabular} & brief description & common usage \\
& \(\operatorname{uni}(f, n)\) & \begin{tabular}{l} 
forms a factor with a level for each record where \\
factor \(f\) has level \(n\)
\end{tabular} \\
\(\operatorname{vect}(v)\) & \begin{tabular}{l} 
is used in a multivariate analysis on a multivariate \\
set of covariates \((v)\) to pair them with the variates
\end{tabular} & \(\sqrt{ }\)
\end{tabular}

\subsection*{6.3 Fixed terms in the model}

\subsection*{6.2.2 Examples}

ASReml code
action
```

yield ~ mu variety

```
residual idv(units)
yield ~ mu variety !r idv(block)
residual idv(units)
yield \(\sim\) mu time variety time.variety
residual idv(units)
livewt \(\sim\) mu breed sex breed.sex !r idv(sire)
residual idv(units)
fits a model with a constant and fixed variety effects
fits a model with a constant term, fixed variety effects and random block effects fits a saturated model with fixed time and variety main effects and time by variety interaction effects
fits a model with fixed breed, sex and breed by sex interaction effects and random sire effects

\subsection*{6.3 Fixed terms in the model}

\subsection*{6.3.1 Primary fixed terms}

The fixed list in the model formula
- describes the fixed covariates, factors and interactions including special functions to be included in the table of Wald F statistics,
- generally begins with the reserved word mu which fits a constant term, mean or intercept, see Table 6.1.

\subsection*{6.4 Random and residual terms in the variance component model}

\subsection*{6.3.2 Sparse fixed terms}

The !f sparse_fixed terms in model formula
- are the fixed covariates (for example, the fixed lin(row) covariate now included in the model formula), factors and interactions including special functions and reserved words (for example mv, see Table 6.1) for which Wald F statistics are not required,
- include large ( \(>100\) levels) terms.
```

NIN Alliance Trial 1989
variety
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety !r idv(repl),
!f mv lin(row)
residual idv(units)

```

\subsection*{6.4 Random and residual terms in the variance component model}

The !r conrandom functions have arguments that
- comprise random covariates, factors and interactions including special functions and reserved words, see Table 6.1. Note that idv() may not enclose a contracted at() function (an at() function that is expanded by ASReml to form multiple model terms) because the result is ambiguous.
```

NIN Alliance Trial }198
variety
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety !r idv(repl),
!f mv
residual idv(units)

```

In Chapter 7 we discuss possible qualifiers that allow specification of initial values and constraints. We have given an explicit specification for these variance component models to emphasise the form of the syntax. However, an alternative more concise implicit specification for these models is to note that idv is a default function and the random terms can be placed after \(!r\) without explicitly specifying idv. Furthermore, residual idv(units) is the default residual specification and may be omitted from the model specification. This is precisely the form used in Release 3 for these models.

\subsection*{6.5 Interactions and conditional factors}

\subsection*{6.5.1 Interactions}
- interactions are formed by joining two or more terms with a '.' (or a ‘'’ which is replaced with '.'), for example, a.b is the interaction of factors a and b,
- interaction levels are arranged with the levels of the second factor nested within the levels of the first,
- labels of factors including interactions are restricted to 47 characters of which only the first 20 are ever displayed. Thus for interaction terms it is often necessary to shorten the names of the component factors in a systematic way, for example, if Time and Treatment are defined in this order, the interaction between Time and Treatment could be specified in the model as Time.Treat; remember that the first match is taken so that if the label of each field begins with a different letter, the first letter is sufficient to identify the term,
- interactions can involve model functions.

\subsection*{6.5.2 Expansions}
- + is ignored, except at the end of the line where it indicates the model is continued on the next line,
- - makes sure the following term is defined but does not include it in the model,
- * indicates factorial expansion (up to 5 way)
\(\mathrm{a} * \mathrm{~b}\) is expanded to \(\mathrm{a} \mathrm{b} \mathrm{a} . \mathrm{b}\)
\(\mathrm{a} * \mathrm{~b} * \mathrm{c} * \mathrm{~d}\) is expanded to
a b c d a.b a.c a.d b.c b.d c.d a.b.c a.b.d a.c.d b.c.d a.b.c.d
- / indicates nested expansion
\(\mathrm{a} / \mathrm{b}\) is expanded to \(\mathrm{a} \mathrm{a} . \mathrm{b}\)
- a. (b c d) e is expanded to a.b a.c a.d e. This syntax is detected by the string '.(' and the closing parenthesis must occur on the same line and before any comma indicating continuation. Any number of terms may be enclosed. Each may have '-' prepended to suppress it from the model.

\subsection*{6.5.3 Conditional factors}

A conditional factor is a factor that is present only when another factor has a particular level.
- individual components are specified using the at ( \(f, n\) ) function (see Table 6.2), for exam-
ple, at (site,1).row will fit row as a factor only for site 1 ,
- a complete set of conditional terms are specified by omitting the level specification in the at \((f)\) function provided the correct number of levels of \(f\) is specified in the field definitions,
- otherwise, a list of levels may be specified (see Table 6.2),
- where variable \(f\) is coded with alphanumeric level names, the level name may be supplied as the second argument. For example at(Type, TEST). Entry where Type is a factor variable with level names TEST and CONTROL.
- \(\mathrm{at}(\mathrm{a}) \mathrm{b}\) creates a series of model terms representing b nested within a for any model term b. A model term is created for each level of a; each has the size of b. For example, if site and geno are factors with 3 and 10 levels respectively, then at(site).geno is shorthand for 3 model terms at (site,1).geno at (site,2).geno at(site,3).geno, each with 10 levels,
- this is similar to forming an interaction except that a separate model term is created for each level of the first factor; this is useful for random terms when each component can have a different variance. The same effect is achieved by using an interaction (e.g. site.geno) and associating a DIAG variance structure with the first component (see Section 7.11).
- any at() term to be expanded MUST be the FIRST component of the interaction. geno.at(site) will not work.
at(site,1).at(year).geno will not work but
at (year).at(site,1).geno is OK.
- the at() factor must be declared with the correct number of levels because the model line is expanded BEFORE the data is read. Thus if site is declared as site \(*\) or site \(!\mathrm{A}\) in the data definitions, at(site).geno will expand to at(site,01).geno at(site,02).geno
regardless of the actual number of sites.

\subsection*{6.5.4 Associated Factors}

Sometimes there is a hierarchical structure to factors which should be recognised as it aids formulation of prediction tables (see ! ASSOCIATE qualifier on page 187). Common examples are Genotypes grouped into Families and Locations grouped by Region. We call these associated factors. The key characteristic of associated factors is that they are coded such that the levels of one are uniquely nested in the levels of another. If one is unknown (coded as missing), all associated factors must be unknown for that data record. It is typically unnecessary to interact associated factors except when required to adequately define the variance structure.

\subsection*{6.6 Alphabetic list of model functions}

\subsection*{6.6 Alphabetic list of model functions}

Table 6.2 presents detailed descriptions of the model functions discussed above. Note that some three letter function names may be abbreviated to the first letter.

Table 6.2: Alphabetic list of model functions and descriptions
model function action
\begin{tabular}{ll} 
abs \((v)\) & \begin{tabular}{l} 
takes the absolute value of the variable \(v\). This function can be used on the response \\
variable.
\end{tabular} \\
and \((t, r)\) & \begin{tabular}{l} 
overlays (adds) \(r\) times the design matrix for model term \(t\) to the existing design \\
matrix. Specifically, if the model up to this point has \(p\) effects and \(t\) has \(a\) effects, \\
the \(a\) columns of the design matrix for \(t\) are multiplied by the scalar \(r\) (default value \\
1.0) and added to the last \(a\) of the \(p\) columns already defined. The overlaid term \\
must agree in size with the term it overlays. This can be used to force a correlation \\
of 1 between two terms as in a diallel analysis \\
male and (female) \\
assuming the \(i\) th male is the same individual as the \(i\) th female.
\end{tabular} \\
at \((f, n)\) & \begin{tabular}{l} 
defines a binary variable which is 1 if the factor \(f\) has level \(n\) for the record. For \\
example, to fit a row factor only for site 3 , use the expression at (site, 3). row. \\
The string @( is equivalent to at (for this function.
\end{tabular} \\
at \((f, n)\) & \begin{tabular}{l} 
at \((f)\) is expanded to a series of terms like at \((f, i)\) where \(i\) takes the values 01 \\
to the number of levels of factor \(f\). Since this command is interpreted before the \\
data is read, it is necessary to declare the number of levels of \(f\) correctly in its field \\
definition. This extended form may only be used as the first term in an interaction.
\end{tabular}
\end{tabular}
at \((f, i, j, k)\) is expanded to a series of terms at \((f, i)\) at \((f, j)\) at \((f, k)\). Simat \((f, m, n) \quad\) ilarly, at \((f, i) \cdot \mathrm{X}\) at \((f, j) \cdot \mathrm{X}\) at \((f, k) . \mathrm{X}\) can be written as at \((f, i, j, k) \cdot X\) pro\(@(f, m, n \quad \operatorname{vided}\) at \((f, i, j, k)\) is written as the first component of the interaction. Any number of levels may be listed. Contiguous sets of values can be specified as \(i: j\).
\(\cos (v, r) \quad\) forms cosine from \(v\) with period \(r\). Omit \(r\) if \(v\) is radians. If \(v\) is degrees, \(r\) is 360 .
\(\operatorname{con}(f) \quad\) apply sum to zero constraints to factor \(f\). It is not appropriate for random factors \(c(f) \quad\) and fixed factors with missing cells. ASReml assumes you specify the correct number of levels for each factor. The formal effect of the con() function is to form a model term with the highest level formally equal to minus the sum of the preceding terms. With sum to zero constraints, a missing treatment level will generate a singularity but in the first coefficient rather than in the coefficient corresponding to the missing treatment. In this case, the coefficients will not be readily interpretable. When interacting constrained factors, all cells in the cross-tabulation should have data.
\(\mathrm{fac}(v) \quad \mathrm{fac}(v)\) forms a factor with a level for each value of \(x\) and any additional points \(\mathrm{fac}(v, y) \quad\) inserted as discussed with the qualifiers ! PPOINTS and !PVAL. \(\mathrm{fac}(v, y)\) forms a factor with a level for each combination of values from \(v\) and \(y\). The values are reported in the .res file.

\subsection*{6.6 Alphabetic list of model functions}

Table 6.2: Alphabetic list of model functions and descriptions
model function action
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\operatorname{giv}(f, n)\) & \multicolumn{9}{|l|}{\multirow[t]{2}{*}{associates the \(n\)th .giv G-inverse with the factor. This is used when there is a known (except for scale) G-structure other than the additive inverse genetic relationship}} \\
\hline \(\mathrm{g}(f, n)\) & & & & & & & & & \\
\hline \(\operatorname{grm}(f, n)\) & \multicolumn{9}{|l|}{matrix. The G-inverse is supplied in a file whose name has the file extension .giv described in Section 9.6. grm() and giv() are formally equivalent with grm standing for generalized relationship Matrix.} \\
\hline \(\mathrm{h}(f)\) & \multicolumn{9}{|l|}{\(\mathrm{h}(f)\) requests ASReml to fit the model term for factor \(f\) using Helmert constraints. Neither Sum-to-zero nor Helmert constraints generate interpretable effects if singularities occur. ASReml runs more efficiently if no constraints are applied. Following is an example of Helmert and sum-to-zero covariables for a factor with 5 levels.} \\
\hline & & H1 & H2 & H3 & H4 & C1 & C2 & C3 & C4 \\
\hline & F1 & -1 & -1 & -1 & -1 & 1 & 0 & 0 & \\
\hline & F2 & 1 & -1 & -1 & -1 & 0 & 1 & 0 & 0 \\
\hline & F3 & 0 & 2 & -1 & -1 & 0 & 0 & 1 & 0 \\
\hline & F4 & 0 & 0 & 3 & -1 & 0 & 0 & 0 & \\
\hline & F5 & 0 & 0 & 0 & 4 & -1 & -1 & -1 & \\
\hline
\end{tabular}
ide \((f) \quad\) is used to take a copy of a pedigree factor \(f\) and fit it without the genetic relationship i \(f\) ) covariance. This facilitates fitting a second animal effect. Thus, to form a direct, maternal genetic and maternal environment model, the maternal environment is defined as a second animal effect coded the same as dams. viz. !r ! \{ animal dam !\} ide (dam)
\(\operatorname{inv}(v[, r]) \quad\) forms the reciprocal of \(v+r\). This may also be used to transform the response variable.
\(\operatorname{leg}(v,[-] n) \quad\) forms \(n+1\) Legendre polynomials of order 0 (intercept), 1 (linear)... \(n\) from the values in \(v\); the intercept polynomial is omitted if \(n\) is preceded by the negative sign. The actual values of the coefficients are written to the .res file. This is similar to the pol() function described below.
\(\operatorname{lin}(f) \quad\) takes the coding of factor \(f\) as a covariate. The function is defined for \(f\) being a \(l(f) \quad\) simple factor, Trait and units. The \(\operatorname{lin}(f)\) function does not centre or scale the variable. Motivation: Sometimes you may wish to fit a covariate as a random factor as well. If the coding is say \(1 \ldots n\), then you should define the field as a factor in the field definition and use the lin() function to include it as a covariate in the model. Do not centre the field in this case. If the covariate values are irregular, you would leave the field as a covariate and use the \(\mathrm{fac}(\) ) function to derive a factor version.
\(\log (v[, r]) \quad\) forms the natural \(\log\) of \(v+r\). This may also be used to transform the response variable.
ma1 creates a first-differenced (by rows) design matrix which, when defining a random \(\operatorname{ma1}(f) \quad\) effect, is equivalent to fitting a moving average variance structure in one dimension. In the ma1 form, the first-difference operator is coded across all data points (assuming they are in time/space order). Otherwise the coding is based on the codes in the field indicated.
\(\operatorname{mbf}(f, c) \quad\) is a term that is predefined by using the ! MBF qualifier (see page 71)
\(\operatorname{mbf}(f)\)

\subsection*{6.6 Alphabetic list of model functions}

Table 6.2: Alphabetic list of model functions and descriptions
```

model function action

```
\(\mathrm{mu} \quad\) is used to fit the intercept/constant term. It is normally present and listed first in the model. It should be present in the model if there are no other fixed factors or if all fixed terms are covariates or contrasts except in the special case of regression through the origin.
mv is used to estimate missing values in the response variable. Formally this creates a model term with a column for each missing value. Each column contains zeros except for a solitary -1 in the record containing the corresponding missing value. This is used in spatial analyses so that computing advantages arising from a balanced spatial layout can be exploited. The equations for mv and any terms that follow are always included in the sparse set of equations.

Missing values are handled in three possible ways during analysis (see Section 6.9). In the simplest case, records containing missing values in the response variable are deleted. For multivariate (including some repeated measures) analysis, records with missing values are not deleted but ASReml drops the missing observation and uses the appropriate unstructured R-inverse matrix. For regular spatial analysis, we prefer to retain separability and therefore estimate the missing value(s) by including the special term mv in the model.
out ( \(n\) ) out \((n)\), out \((n, t)\) establishes a binary variable which is:
\(\operatorname{out}(n, t) \quad \operatorname{out}(i) 1\) if data relates to observation \(i\), (trait 1 ), else is 0 out \((i, t) 1\) if data relates to observation \(i\), (trait \(t\) ), else is 0
The intention is that this be used to test/remove single observations for example to remove the influence of an outlier or influential point. Possible outliers will be evident in the plot of residuals versus fitted values (see the .res file) and the appropriate record numbers for the out () term are reported in the .res file. Note that \(i\) relates to the data analysed and will not be the same as the record number as obtained by counting data lines in the data file if there were missing observations in the data and they have not been estimated. (To drop records based on the record number in the data file, use the ! D transformation in association with the \(!=\mathrm{VO}\) transformation.)
\(\operatorname{pol}(v, n) \quad\) forms a set of orthogonal polynomials of order \(|\mathrm{n}|\) based on the unique values in \(\mathrm{p}(v, n) \quad\) variate (or factor) \(v\) and any additional interpolated points, see !PPOINTS and !PVAL in Table 5.4. It includes the intercept if \(n\) is positive, omits it if \(n\) is negative. For example, pol (time,2) forms a design matrix with three columns of the orthogonal polynomial of degree 2 from the variable time. Alternatively, pol(time, -2 ) is a term with two columns having centred and scaled linear coefficients in the first column and centred and scaled quadratic coefficients in the second column.

The actual values (Robson, 1959, Steep and Torrie, 1960) of the coefficients are written to the .res file. This factor could be interacted with a design factor to fit random regression models. The leg() function differs from the pol() function in the way the quadratic and higher polynomials are calculated.
\(\operatorname{pow}(x, p[, o])\) defines the covariable \((x+o)^{p}\) for use in the model where \(x\) is a variable in the data, \(p\) is a power and \(o\) is an offset. \(\operatorname{pow}(x, 0.5[, o])\) is equivalent to \(\operatorname{sqr}(x[, o]) ; \operatorname{pow}(x, 0[, o])\) is equivalent to \(\log (x[, o]) ; \operatorname{pow}(x,-1[, o])\) is equivalent to \(\operatorname{inv}(x[, o])\).

\subsection*{6.6 Alphabetic list of model functions}

Table 6.2: Alphabetic list of model functions and descriptions
model function action
qtl ( \(f, r\) ) calculates an expected marker state from flanking marker information at position \(r\) of the linkage group \(f\) (see ! MM to define marker locations). \(r\) may be specified as \(\$\) TP \(n\) where \(\$\) TP \(n\) has been previously internally defined with a predict statement (see page 183). \(r\) should be given in Morgans.
\(\sin (v, r) \quad\) forms sine from \(v\) with period \(r\). Omit \(r\) if \(v\) is radians. If \(v\) is degrees, \(r\) is 360 .
\(\operatorname{spl}(v[, k]) \quad\) In order to fit spline models associated with a variate \(v\) and \(k\) knot points in ASReml, \(\mathrm{s}(v[, k]) \quad v\) is included as a covariate in the model and \(\operatorname{spl}(v, k)\) as a random term. The knot points can be explicitly specified using the !SPLINE qualifier (Table 5.4). If \(k\) is specified but ! SPLINE is not specified, equally spaced points are used. If \(k\) is not specified and there are less than 50 unique data values, they are used as knot points. If there are more than 50 unique points then 50 equally spaced points will be used. The spline design matrix formed is written to the .res file. An example of the use of spl() is
price ~ mu week !r spl(week)
\(\operatorname{sqrt}(v[, r]) \quad\) forms the square root of \(v+r\). This may also be used to transform the response variable.
Trait is used with multivariate data to fit the individual trait means. It is formally equivalent to mu but Trait is a more natural label for use with multivariate data. It is interacted with other factors to estimate their effects for all traits.
units creates a factor with a level for every record in the data file. This is used to fit the 'nugget' variance when a correlation structure is applied to the residual.
\(\operatorname{uni}(f[, 0[, n]])\) creates a factor with a new level whenever there is a level present for the factor \(f\). Levels (effects) are not created if the level of factor \(f\) is 0 , missing or negative. The size may be set in the third argument by setting the second argument to zero.
\(\operatorname{uni}(f, k[, n]) \quad\) creates a factor with a level for every record subject to the factor level of \(f\) equalling \(k\), i.e. a new level is created for the factor whenever a new record is encountered whose integer truncated data value from data field \(f\) is \(k\). Thus uni (site,2) would be used to create an independent error term for site 2 in a multi-environment trial and is equivalent to at (site,2) .units. The default size of this model term is the number of data records. The user may specify a lower number as the third argument. There is little computational penalty from the default but the .sln file may be substantially larger than needed. However, if the units vector is full size, the effects are mapped by record number and added back to the fitted residual for creating 'residual' plots.

Table 6.2: Alphabetic list of model functions and descriptions
```

model function action

```
\(\operatorname{vect}(v) \quad\) is used in a multivariate analysis on a multivariate set of covariates \((v)\) to pair them with the variates. The test example included
signal !G 93 \# 93 slides
background !G 93
dart.asd !ASUV
signal ~Trait Trait.vect(background) ...
to fit a slide specific regression of signal on background. In this example, signal is a multivariate set of 93 variates and background is a set of 93 covariates. The signal values relate to either the Red or Green channels. So for each slide and channel, we need to fit a simple regression of signal \(\sim\) mu background. But the data for the 93 slides is presented in parallel. If it were presented in series, with a factor slide indexing the slides, the equivalent model would be signal \(\sim\) slide slide.background.

\subsection*{6.7 Weights}

Weighted analyses are achieved by using ! WT weight as a qualifier to the response variable. An example of this is y !WT wt \(\sim \mathrm{mu}\) A X where y is the name of the response variable and wt is the name of a variate in the data containing weights. If these are relative weights (to be scaled by the units variance) then this is all that is required. If they are absolute weights, that is, the reciprocal of known variances, use the !GF qualifier to fix the variances in the residual model (Section 7.3). When a structure is present in the residuals (Section 7.3) the weights are applied as a matrix product. If \(\boldsymbol{\Sigma}\) is the structure and \(\boldsymbol{W}\) is the diagonal matrix constructed from the square root of the values of the variate weight, then \(\boldsymbol{R}^{-1}=\boldsymbol{W} \boldsymbol{\Sigma}^{-1} \boldsymbol{W}\). Negative weights are treated as zeros.

\subsection*{6.8 Generalized Linear (Mixed) Models}

ASReml includes facilities for fitting the family of Generalized Linear Models (GLMs, McCullagh and Nelder, 1994). A GLM is defined by a mean variance function and a link function. In this context \(y\) is the observation, \(n\) is the count for grouped data specified by the !TOTAL qualifier, \(\phi\) is a parameter set with the ! PHI qualifier,
\(\mu\) is the mean on the data scale calculated using the inverse link function from the predicted value \(\eta\) on the underlying scale where \(\boldsymbol{\eta}=\boldsymbol{X} \boldsymbol{\tau}\),
\(v\) is the variance under some distributional assumption calculated as a function of \(\mu\) and \(n\), and
\(d\) is the deviance (-twice the log likelihood) for that distribution.

Table 6.3: Link qualifiers and functions
\begin{tabular}{llll}
\hline Qualifier & Link & Inverse Link & Available with \\
\hline ! IDENTITY & \(\boldsymbol{\eta}=\boldsymbol{\mu}\) & \(\boldsymbol{\mu}=\boldsymbol{\eta}\) & All \\
!SQRT & \(\boldsymbol{\eta}=\sqrt{\boldsymbol{\mu}}\) & \(\boldsymbol{\mu}=\boldsymbol{\eta}^{2}\) & Poisson \\
!LOGARITHM & \(\boldsymbol{\eta}=\ln (\boldsymbol{\mu})\) & \(\boldsymbol{\mu}=\exp (\boldsymbol{\eta})\) & \begin{tabular}{l} 
Normal, Poisson, Negative Bino- \\
mial, Gamma
\end{tabular} \\
! INVERSE & \(\boldsymbol{\eta}=1 / \boldsymbol{\mu}\) & \(\boldsymbol{\mu}=1 / \boldsymbol{\eta}\) & Normal, Gamma, Negative Binomial \\
!LOGIT & \(\boldsymbol{\eta}=\boldsymbol{\mu} /(1-\boldsymbol{\mu})\) & \(\boldsymbol{\mu}=\frac{1}{(1+\operatorname{exp(-\boldsymbol {\eta }))}}\) & Binomial, Multinomial Threshold \\
!PROBIT & \(\boldsymbol{\eta}=\Phi^{-1}(\boldsymbol{\mu})\) & \(\boldsymbol{\mu}=\Phi(\boldsymbol{\eta})\) & Binomial, Multinomial Threshold \\
!COMPLOGLOG & \(\boldsymbol{\eta}=\ln (-\ln (1-\boldsymbol{\mu}))\) & \(\boldsymbol{\mu}=1-e^{-e^{\eta}}\) & Binomial, Multinomial Threshold \\
\hline
\end{tabular}
where \(\mu\) is the mean on the data scale and \(\boldsymbol{\eta}=\boldsymbol{X} \boldsymbol{\tau}\) is the linear predictor on the underlying scale.

GLMs are specified by qualifiers after the name of the dependent variable but before the \(\sim\) character. Table 6.3 lists the link function qualifiers which relate the linear predictor ( \(\boldsymbol{\eta}\) ) scale to the observation \((\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{y}])\) scale. Table 6.4 lists the distribution and other qualifiers.

Table 6.4: GLM distribution qualifiers
The default link is listed first followed by permitted alternatives.


\subsection*{6.8 Generalized Linear (Mixed) Models}

Table 6.4: GLM distribution qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & action \\
\hline & \begin{tabular}{l}
The multinomial threshold model is fitted as a cumulative probability model. The proportions ( \(y_{i}=r_{i} / n\) ) in the ordered categories are summed to form the cumulative proportions \(\left(Y_{i}\right)\) which are modelled with logit (!LOGIT), probit (!PROBIT) or Complementary LogLog (!CLOG) link functions. The implicit residual variance on the underlying scale is \(\pi^{2} / 3 \sim 3.3\) (underlying logistic distribution) for the logit link, 1 for the probit link. The distribution underlying the Complementary LogLog link is the Gumbel distribution with implicit residual variance on the underlying scale of \(\pi^{2} / 6 \sim 1.65\) \\
For example \\
ing !MULTINOMIAL 4 !CUMULATIVE \(\sim\) Trait Variety !r block \\
dict Variety \\
where Lodging is a factor with 4 ordered categories. Predicted values are reported for the cumulative proportions.
\end{tabular} \\
\hline \[
\begin{aligned}
& !\text { POISSON } \quad[!\text { LOGARITH } \\
& v=\mu \\
& d=2(y \ln (y / \mu) \\
& \quad-(y-\mu))
\end{aligned}
\] & \begin{tabular}{l}
M | ! IDENTITY \| ! SQRT ] \\
Natural logarithms are the default link function. ASReml assumes the Poisson variable is not negative.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { ! GAMMA } \quad \quad \quad \text { ! INVERSE } \\
& v=\mu^{2} /(\phi n) \\
& d=2 n\left(-\phi \ln \left(\frac{\phi y}{\mu}\right)\right. \\
& \left.\quad+\frac{\phi y-\mu}{\mu}\right)
\end{aligned}
\] & \begin{tabular}{l}
! IDENTITY | ! LOGARITHM ][!PHI \(\phi\) ][!TOTAL \(n\) ] \\
The inverse is the default link function. \(n\) is defined with the !TOTAL qualifier and would be degrees of freedom in the typical application to mean-squares. The default value of \(\phi\) is 1 .
\end{tabular} \\
\hline \[
\begin{aligned}
& !\text { NEGBIN } \quad[!\text { LOGARITH } \\
& v=\mu+\mu^{2} / \phi \\
& d=2\left((\phi+y) \ln \left(\frac{\mu+\phi}{y+\phi}\right)\right. \\
& \left.+y \ln \left(\frac{y}{\mu}\right)\right)
\end{aligned}
\] & \begin{tabular}{l}
| ! IDENTITY | ! INVERSE ] [!PHI \(\phi\) ] \\
fits the Negative Binomial distribution. Natural logarithms are the default link function. The default value of \(\phi\) is 1 .
\end{tabular} \\
\hline
\end{tabular}

General qualifiers
! AOD
requests an Analysis of Deviance table be generated. This is formed by fitting a series of sub models for terms in the DENSE part building up to the full model, and comparing the deviances. An example if its use is
LS !BIN !TOT COUNT !AOD ~ mu SEX GROUP
! AOD may not be used in association with PREDICT.
!DISP [ \(h\) ] includes an overdispersion scaling parameter \((h)\) in the weights. If !DISP is specified with no argument, ASReml estimates it as the residual variance of the working variable. Traditionally it is estimated from the deviance residuals, reported by ASReml as Variance heterogeneity.
An example if its use is count !POIS !DISP ~ mu group
!OFFSET [ \(o\) ] is used especially with binomial data to include an offset in the model where \(o\) is the number or name of a variable in the data. The offset is only included in binomial and Poisson models (for Normal models just subtract the offset variable from the response variable), for example
count ! POIS !OFFSET base !DISP \(\sim\) mu group
The offset is included in the model as \(\boldsymbol{\eta}=\boldsymbol{X} \tau+o\). The offset will often be something like \(\ln (n)\).

Table 6.4: GLM distribution qualifiers


A second dependent variable may be specified (except with a multinomial response (!MULTINOMIAL)) if a bivariate analysis is required but it will always be treated as a normal variate (no syntax is provided for specifying GLM attributes for it). The ! ASUV qualifier is required in this situation for the GLM weights to be utilized.

ASReml internally calculates the appropriate inverse R structure arising from the distribution and link function and so in general a residual line is not needed. The only exception is in this bivariate case when id(units).us(Trait) is needed and us (Trait) has the three residual components and often the first one associated with the GLM is constrained to an initial value of 1 .

\subsection*{6.8.1 Generalized Linear Mixed Models}

\section*{This section was written by Damian Collins}

A Generalized Linear Mixed Model (GLMM) is an extension of a GLM to include random terms in the linear predictor. Inference concerning GLMMs is impeded by the lack of a closed form expression for the likelihood. ASReml currently uses an approximate likelihood technique called penalized quasi-likelihood, or PQL (Breslow and Clayton, 1993), which is based on a first order Taylor series approximation. This technique is also known as Schalls technique (Schall, 1991), pseudo-likelihood (Wolfinger and OConnell, 1993) and joint maximisation (Harville and Mee, 1984, Gilmour et al., 1985). Implementations of PQL are

\subsection*{6.9 Missing values}
found in many statistical packages, for instance, in the GLMM (Welham, 2005) and the IRREML procedures of Genstat (Keen, 1994), the MLwiN package (Goldstein et al., 1998), the GLMMIX macro in SAS (Wolfinger, 1994), and in the GLMMPQL function in R.

The PQL technique is well-known to suffer from estimation biases for some types of GLMMs. For grouped binary data with small group sizes, estimation biases can be over \(50 \%\) (e.g. Breslow and Lin, 1995, Goldstein and Rasbash, 1996, Rodriguez and Goldman, 2001, Waddington et al., 1994). For other GLMMs, PQL has been reported to perform adequately (e.g. Breslow, 2003). McCulloch and Searle (2001) also discuss the use of PQL for GLMMs.

The performance of PQL in other respects, such as for hypothesis testing, has received much less attention, and most studies into PQL have examined only relatively simple GLMMs. Anecdotal evidence suggests that this technique may give misleading results in certain situations. Therefore we cannot recommend the use of this technique for general use, and it is included in the current version of ASReml for advanced users. If this technique is used, we recommend the use of cross-validatory assessment, such as applying PQL to simulated data from the same design (Millar and Willis, 1999).

The standard GLM Analysis of Deviance (! AOD) should not be used when there are random terms in the model as the variance components are reestimated for each submodel

\subsection*{6.9 Missing values}

\subsection*{6.9.1 Missing values in the response}

It is sometimes computationally convenient to estimate missing values, for example, in spatial analysis of regular arrays, see example 3a in Section 7.5. Missing values are estimated if the model term mv is included in the model. mv is formally shown here in the sparse fixed effects to emphasise that it is always included in the sparse equations. If mv is listed in the fixed effects section, it and any following fixed effect terms are processed as sparse (see Section 6.10.1).
```

NIN Alliance Trial 1989
variety
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety !r idv(repl),
!f mv
residual idv(units)

```

Formally, mv creates a factor with a covariate for each missing value. The covariates are coded 0 except in the record where the particular missing value occurs, where it is coded -1 . The action when mv is omitted from the model depends on whether a univariate or multivariate analysis is being performed. For a univariate analysis, ASReml discards records which have a missing response. In multivariate analyses, all records are retained and the \(R\) matrix is modified to reflect the missing value pattern.

\subsection*{6.9.2 Missing values in the explanatory variables}

ASReml will abort the analysis if it finds missing values in the design matrix which are not directly associated with missing values for the response or logically excluded from the model
by being in combination with an at() term which evaluates to ZERO unless ! MVINCLUDE or !MVREMOVE is specified, see Section 5.8. !MVINCLUDE causes the missing value to be treated as a zero. ! MVREMOVE causes ASReml to discard the whole record. Records with missing values in particular fields can be explicitly dropped using the !DV \(*\) transformation, Table 5.1.

Covariates: Treating missing values as zero in covariates is usually only acceptable if the covariate is centred (has mean of zero).

Design factors: Where the factor level is zero (or missing and the !MVINCLUDE qualifier is specified), no level is assigned to the factor for that record. These effectively defines an extra level (class) in the factor which becomes a reference level.

\subsection*{6.10 Some technical details about model fitting in ASReml}

\subsection*{6.10.1 Sparse versus dense}

ASReml partitions the terms in the linear model into two parts: a dense set and a sparse set. The partition is at the ! \(r\) point unless explicitly set with the ! DENSE data line qualifier or mv is included before ! r , see Table 5.5. The special term mv is always included in sparse. Thus random and sparse terms are estimated using sparse matrix methods which result in faster processing. The inverse coefficient matrix is fully formed for the terms in the dense set. The inverse coefficient matrix is only partially formed for terms in the sparse set. Typically, the sparse set is large and sparse storage results in savings in memory and computing. A consequence is that the variance matrix for estimates is only available for equations in the dense portion.

\subsection*{6.10.2 Ordering of terms in ASReml}

The order in which estimates for the fixed and random effects in linear mixed model are reported will usually differ from the order the model terms are specified. Solutions to the mixed model equations are obtained using the methods outlined Gilmour et al., 1995. ASReml orders the equations in the sparse part to maintain as much sparsity as it can during the solution. After absorbing them, it absorbs the model terms associated with the dense equations in the order specified.

\subsection*{6.10.3 Aliassing and singularities}

A singularity is reported in ASReml when the diagonal element of the mixed model equations is effectively zero (see the !TOLERANCE qualifier) during absorption. It indicates there is either
- no data for that fixed effect, or
- a linear dependence in the design matrix means there is no information left to estimate
the effect.
ASReml handles singularities by using a generalized inverse in which the singular row/column is zero and the associated fixed effect is zero. Which equations are singular depends on the order the equations are processed. This is controlled by ASReml for the sparse terms but by the user for the dense terms. They should be specified with main effects before interactions so that the table of Wald F statistics has correct marginalization. Since ASReml processes the dense terms from the bottom up, the first level (the last level processed) is typically singular.

The number of singularities is reported in the .asr file immediately prior to the REML \(\log\)-likelihood (LogL) line for that iteration (see Section 14.3). The effects (and associated standard or prediction error) which correspond to these singularities are zero in the .sln file.

Singularities in the sparse_fixed terms of the model may change with changes in the random terms included in the model. If this happens it will mean that changes in the REML loglikelihood are not valid for testing the changes made to the random model. This situation is not easily detected as the only evidence will be in the .sln file where different fixed effects are singular. A likelihood ratio test is not valid if the fixed model has changed.

\subsection*{6.10.4 Examples of aliassing}

The sequence of models in Table 6.5 are presented to facilitate an understanding of overparameterised models. It is assumed that var is a factor with 4 levels, trt with 3 levels and rep with 3 levels and that all var.trt combinations are present in the data.

\section*{Table 6.5: Examples of aliassing in ASReml}
\begin{tabular}{lll} 
model & \begin{tabular}{l} 
number of \\
singularities
\end{tabular} & order of fitting \\
yield \(\sim\) var !r idv (rep) & 0 & \begin{tabular}{l} 
rep var \\
yield \(\sim\) mu var !r idv (rep)
\end{tabular} \\
yield \(\sim \operatorname{var} \operatorname{trt}!r\) idv(rep) & 1 & \begin{tabular}{l} 
rep mu var \\
first level of var is aliassed and set to \\
zero
\end{tabular} \\
yield \(\sim \operatorname{mu} \operatorname{var} \operatorname{trt}\) var.trt, & 8 & \begin{tabular}{l} 
rep var trt \\
var fully fitted, first level of trt is \\
aliassed and set to zero \\
rep mu var trt var.trt \\
first levels of both var and trt are \\
aliassed and set to zero, together with \\
subsequent interactions
\end{tabular}
\end{tabular}

Table 6.5: Examples of aliassing in ASReml
\begin{tabular}{|c|c|c|}
\hline model & number of singularities & order of fitting \\
\hline yield \(\sim\) mu var trt \(!r \operatorname{idv}(r e p)\), !f var.trt & 8 & [ var.trt rep] mu var trt var.trt fitted before mu, var and trt, var.trt fully fitted; mu, var and trt are completely singular and set to zero. The order within [var.trt rep ] is determined internally. \\
\hline
\end{tabular}

\subsection*{6.11 Wald F Statistics}

The so called ANOVA table of Wald F statistics has 4 forms:
Source NumDF F-inc
Source NumDF F-inc F-con M
Source NumDF DDF_inc F-inc P-inc
Source NumDF DDF_con F-inc F-con M P-con
depending on whether conditional Wald F statistics are reported (requested by the ! FCON qualifier) and whether the denominator degrees of freedom are reported. ASReml always reports incremental Wald F statistics (F-inc) for the fixed model terms (in the DENSE partition) conditional on the order the terms were nominated in the model. Note that probability values are only available when the denominator degrees of freedom is calculated, and this must be explicitly requested with the ! DDF qualifier in larger jobs. Users should study Section 2.5 to understand the contents of this table. The 'conditional maximum' model used as the basis for the conditional F statistic is spelt out in the .aov file described in Section 14.4.

The numerator degrees of freedom (NumDF) for each term is easily determined as the number of non-singular equations involved in the term. However, in general, calculation of the denominator degrees of freedom (DDF) is not trivial. ASReml will by default attempt the calculation for small analyses, by one of two methods. In larger analyses, users can request the calculation be attempted using the ! DDF qualifier (page 67). Use !DDF -1 to prevent the calculation to save processing time when significance testing is not required.

\section*{7 Command file: Specifying the variance structures}

In Chapter 2 we presented the general linear mixed model
\[
y=X \tau+Z u+e
\]
where \(\boldsymbol{y}(n \times 1)\) is a vector of observations, \(\boldsymbol{\tau}(p \times 1)\) is a vector of fixed effects, \(\boldsymbol{X}(n \times p)\) is the design matrix of full column rank that associates observations with the appropriate combination of fixed effects, \(\boldsymbol{u}(q \times 1)\) is a vector of random effects, \(\boldsymbol{Z}(n \times q)\) is the design matrix that associates observations with the appropriate combination of random effects, and \(\boldsymbol{e}(n \times 1)\) is the vector of residual errors, see model (2.1). Among the key concepts regarding this model are:
- the sigma parameterization (Section 2.1.1):
\[
\left[\begin{array}{l}
\boldsymbol{u} \\
\boldsymbol{e}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
\boldsymbol{G}\left(\boldsymbol{\sigma}_{g}\right) & \mathbf{0} \\
\mathbf{0} & \boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)
\end{array}\right]\right)
\]
where the matrices \(\boldsymbol{G}\) and \(\boldsymbol{R}_{v}\) are variance matrices for \(\boldsymbol{u}\) and \(\boldsymbol{e}\) and are functions of parameters \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\). Under this parameterization
\[
\operatorname{var}(\boldsymbol{y})=\boldsymbol{Z} \boldsymbol{G}\left(\boldsymbol{\sigma}_{g}\right) \boldsymbol{Z}^{\top}+\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)
\]
- G structures for the random model terms (Section 2.1.3) and R structures for the residual error term (Section 2.1.5),
- direct sum structures for \(\boldsymbol{G}\) and/or \(\boldsymbol{R}_{v}\left(\boldsymbol{R}_{c}\right.\), see below) (Sections 2.1.3 and 2.1.5),
- direct product structures for terms composed of several component factors (Section 2.1.10),
- the gamma parameterization for estimation of variance structure parameters as ratios relative to the residual error variance (Section 2.1.6):
\[
\left[\begin{array}{l}
\boldsymbol{u} \\
\boldsymbol{e}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right], \sigma_{e}^{2}\left[\begin{array}{cc}
\boldsymbol{G}\left(\gamma_{g}\right) & \mathbf{0} \\
\mathbf{0} & \boldsymbol{R}_{c}\left(\gamma_{r}\right)
\end{array}\right]\right)
\]

\subsection*{7.2 Process to define a consolidated model term}
where \(\gamma_{g}\) and \(\gamma_{r}\) represent the variance structure parameters associated with scaled (by \(\sigma_{e}^{2}\) ) variance matrices. Under this parameterization
\[
\operatorname{var}(\boldsymbol{y})=\sigma_{e}^{2}\left(\boldsymbol{Z} \boldsymbol{G}\left(\gamma_{g}\right) \boldsymbol{Z}^{\top}+\boldsymbol{R}_{c}\left(\boldsymbol{\gamma}_{r}\right)\right)
\]

In this chapter we give a detailed account of variance modeling in ASReml.

\subsection*{7.1 Applying variance models to random terms}

In the previous chapter we showed how to specify the random model terms \(\boldsymbol{u}_{i}\) in \(\boldsymbol{u}\) and associated design matrices and we assumed the effects were IID by using an idv() function. We can naturally extend this using other functions. Some common variance functions are defined in Table 7.1; the full range of variance model functions and their detailed definition is presented in Table 7.6.

The models are classified as variance models if they include a scale parameter, or as correlation models if their scale is fixed. Except for the giv models, correlation models take value 1 on the diagonal. Names of correlation models can be appended with v (eg. idv()) to add a common variance, ie. same variance across all rows, or with h (eg. idh()) to allow a separate variance for each row. If all of the variables in a term do not have a variance model specified then the default variance model, \(\operatorname{idv}()\), will be applied to these variables. We further generalise this in Section 7.2 and Table 7.2 by introducing the idea of a consolidated model term that simultaneously defines both the design matrix \(\left(\boldsymbol{Z}_{i}\right)\) and variance model \(\left(\boldsymbol{G}_{i}\right)\), in particular allowing \(\boldsymbol{G}_{i}\) to be the direct product of variance structures. In Section 7.4 we further generalise the consolidated model specification to allow the residual variance structure to be the direct sum of variance structures.

\subsection*{7.2 Process to define a consolidated model term}

Consider a linear model term column.row comprising the interaction between the single factors column and row. We refer to column.row as a compound model term. If the variance structure for column. row is the direct product of two matrices, the first of which is an IID variance structure, that is, a scaled identity matrix, with dimension equal to the number of levels of the factor column and the second of which is a matrix with dimension equal to the number of levels of the factor row and with elements representing a first order autoregressive correlation structure AR1, then we represent this by the consolidated model term idv(column).ar1(row). This specifies a two-dimensional separable spatial variance structure for column.row but with spatial correlation in the row direction only. A consolidated model term is therefore comprised of component terms, each with a variance model function applied to give the required direct product form of the variance structure. Table 7.2 demonstrates how to build consolidated terms in ASReml for a small selection of examples. The linear model term (single or compound) is first identified (column 2) and the individual components that identify the dimension of the individual matrices used in forming the direct product variance structure are then written down (column 3). Note that in the simplest cases there is only one component. The variance structure associated with each component has a

\subsection*{7.2 Process to define a consolidated model term}

Table 7.1: List of common variance model functions, their type (correlation or variance), the form of the variance matrix generated ( \(\boldsymbol{C}\) for correlation, \(\boldsymbol{V}\) for variance matrix, \(\boldsymbol{S}\) for scaled variance matrix), and a brief description. Parameters \(\sigma_{i}^{2}>0\) are variances, \(-1<\rho_{i}<1\) are correlations. Subscipt \(c\) denotes parameter held in common across all rows/columns.
\begin{tabular}{|c|c|c|c|}
\hline name & type & variance matrix (for set of \(n\) effects) & description \\
\hline id() & correlation & \(\boldsymbol{C}=\boldsymbol{I}\) & IID with variance 1 \\
\hline \(i d v()\) & variance & \(\boldsymbol{V}=\sigma_{c}^{2} \boldsymbol{I}\) & IID with common variance \(=\) default model \\
\hline idh() & variance & \(\boldsymbol{V}=\operatorname{diag}\left\{\sigma_{1}^{2} \ldots \sigma_{n}^{2}\right\}\) & independent with separate variances \\
\hline ar1() & correlation & \(C_{i j}=\rho_{c}^{|i-j|}\) & auto-regressive structure of order 1 \\
\hline \(\operatorname{ar1v}()\) & variance & \(V_{i j}=\sigma_{c}^{2} \rho_{c}^{|i-j|}\) & auto-regressive structure of order 1 \\
\hline ar1h() & variance & \(V_{i j}=\sigma_{i} \sigma_{j} \rho_{c}^{|i-j|}\) & auto-regressive structure of order 1 \\
\hline \(\operatorname{corg}()\) & correlation & \(C_{i j}=\rho_{i j}\) & unstructured correlation matrix \\
\hline diag() & variance & \(\boldsymbol{V}=\operatorname{diag}\left\{\sigma_{1}^{2} \ldots \sigma_{n}^{2}\right\}\) & independent with separate variances (same as idh()) \\
\hline grm() & scaled variance & \(\boldsymbol{S}\) specified & applies a known scaled variance matrix; the number of rows in the matrix must be match the number of levels of the factor it is applied to and the order of the rows must match the order of the levels \\
\hline nrm() & scaled variance & \(\boldsymbol{S}\) specified & applies a generated relationship matrix derived from the functions argument associated pedigree file \\
\hline us() & variance & \(V_{i j}=\sigma_{i j}\) & general unstructured, symmetric positive definite covariance matrix \\
\hline xfak() & variance & \(\boldsymbol{V}=\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\top}+\boldsymbol{\Psi}\) & factor analytic model of order \(k\) with \(\boldsymbol{\Lambda}\) of size \(n \times k\). \\
\hline
\end{tabular}
structure name (column 4) and a corresponding variance model function name (column 5) giving the associated component variance structures (column 6). The consolidated model term is the term presented in the final column of the table. In contrast, in ASReml 3 the linear model terms are defined on the model line and subsequently a \(G\) structure line is given for each linear model term which specifies the component terms and their associated structures. The simplest form of a consolidated model term is a single model term with a variance model function applied, eg. idv(repl) in Table 7.2, and the next simplest is a compound model term with a variance model function applied, eg. idv(A.B) in Table 7.2.

In summary, the following are rules in forming consolidated model terms and applying variance model functions to random model terms:
- variance model functions can be applied to single model terms (see example \(\mathbf{1}\) in Table 7.2 ), the components in compound model terms (examples \(\mathbf{4}\) to \(\mathbf{6}\) ) and constructed linear model functions of variables (example 2),
- variance model functions can also be applied to compound model terms (example 3)

Table 7.2: Building consolidated model terms in ASReml
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & linear model term (type of term) & component(s) & variance structure name & \begin{tabular}{l}
variance \\
model \\
function \\
name
\end{tabular} & covariance component & consolidated model term \\
\hline 1 & \begin{tabular}{l}
repl \\
single
\end{tabular} & repl & IDV & idv() & idv(repl) & idv(repl) \\
\hline 2 & \begin{tabular}{l}
fac (x) \\
single
\end{tabular} & \(\mathrm{fac}(\mathrm{x})\) & EXPV & \(\operatorname{expv}()\) & \(\operatorname{expv}(\mathrm{fac}(\mathrm{x})\) ) & \(\operatorname{expv}(\mathrm{fac}(\mathrm{x})\) ) \\
\hline 3 & A.B compound & A.B & IDV & idv() & idv(A.B) & idv(A.B) \\
\hline 4 & \begin{tabular}{l}
column.row \\
compound
\end{tabular} & column
row & \[
\begin{aligned}
& \text { IDV } \\
& \text { AR1 }
\end{aligned}
\] & \[
\begin{aligned}
& i d v() \\
& \operatorname{ar1()}
\end{aligned}
\] & \[
\begin{aligned}
& \text { idv(column) } \\
& \text { ar1 (row) }
\end{aligned}
\] & idv(column).ar1 (row) \\
\hline 5 & site.variety compound & \[
\begin{aligned}
& \text { site } \\
& \text { variety }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DIAG } \\
& \text { ID }
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{diag}() \\
& \text { id() }
\end{aligned}
\] & \[
\begin{aligned}
& \text { diag(site) } \\
& \text { id(variety) }
\end{aligned}
\] & diag(site).id(variety) \\
\hline 6 & Trait.animal compound & Trait animal & \begin{tabular}{l}
US \\
NRM
\end{tabular} & \begin{tabular}{l}
us() \\
nrm()
\end{tabular} & \begin{tabular}{l}
us(Trait) \\
nrm(animal)
\end{tabular} & us(Trait).nrm(animal) \\
\hline
\end{tabular}
- variance model functions cannot be applied to expandable model terms, for example, to
- A*B which expands to A B A.B
- A/B which expands to A A.B
- at (A, i, j).B which expands to at(A,i).B at (A,j).B
- only one component of a variance structure for a compound model term may include a variance parameter, the other components must be correlation structures (no associated variance parameter). This is due to the identifiability issues that occur when multiple variance structures are specified. This is explained in NIN example 3a, see Section 7.5. The defined variance function may be homogeneous (name ending in v ) or heterogeneous variance (name ending in h ). This is discussed in detail in Section 7.11.1.

\subsection*{7.2.1 Modelling a single variance structure over several model terms}

This facility was motivated by two considerations. Typically the random effects from any two distinct model terms are uncorrelated. However, in some models one \(\boldsymbol{G}\) structure may apply across several model terms. Sometimes one also wishes to partition the random effects into sets with independent variance structures. In ASReml, we can accomplish these two models using the special variance model function \(\operatorname{str}()\), where the name str is for structure

\subsection*{7.2 Process to define a consolidated model term}
and \(\operatorname{str}()\) has the following general form:
str (model term(s) variance structure(s))
The \(m\) individual model terms generate the design matrices \(\boldsymbol{Z}_{i}\) and effect vectors \(\boldsymbol{u}_{i}\) of size \(b_{i}(\mathrm{i}=1, \ldots, \mathrm{~m})\) and the \(v\) variance structure terms generate variance structures \(\boldsymbol{G}_{j}\) of size \(b_{j}^{*}(j=1, \ldots, v)\). The function \(\operatorname{str}()\) generates a combined model design matrix \(\boldsymbol{Z}_{c}=\left[\boldsymbol{Z}_{1} \ldots \boldsymbol{Z}_{m}\right]\) and a combined effects vector \(\boldsymbol{u}_{c}^{\top}=\left[\boldsymbol{u}_{1}^{\top} \ldots \boldsymbol{u}_{m}^{\top}\right]\) of size \(b_{c}=\sum_{i=1}^{m} b_{i}\) and the variance structure for \(\boldsymbol{u}_{c}\) is \(\boldsymbol{G}_{c}=\oplus_{j=1}^{v} \boldsymbol{G}_{j}\) for \(\boldsymbol{u}_{c}\) and \(\boldsymbol{G}_{c}\) to be conformable \(\Sigma_{j=1}^{v} b_{j}^{*}=b_{c}\). If \(v=1\) then there is one variance structure associated with the combined set of effects and if \(v>1\) we can partition \(\boldsymbol{u}_{c}\) and \(\boldsymbol{G}_{c}\) with \(\boldsymbol{u}_{c}^{\top}=\left[\boldsymbol{u}_{1}^{*^{\top}} \ldots \boldsymbol{u}_{v}^{* \top}\right]\) and \(\boldsymbol{G}_{c}=\left[\boldsymbol{G}_{1}^{*} \ldots \boldsymbol{G}_{v}^{*}\right]\) and the effect vectors are independent of each other and the effects \(\boldsymbol{u}_{j}^{*}\) have variance structure \(\boldsymbol{G}_{j}^{*}\). A restriction with \(\operatorname{str}()\) is that the closing parenthesis must be on the same line because of the way ASReml processes the command file.

\section*{Example 7.1 Random coefficient regression}

In the first order random coefficient regression model it is required to specify a covariance between the intercept and slope for each subject to ensure translation invariance, that is, equivalent variance parameter estimates for addition of any constant to the independent variable. For example, in a random coefficient regression where a set of random intercepts is specified by the model term Animal (with 10 levels) and a set of random slopes is specified by the model term age.Animal, translation invariance is achieved using str () as
```

str(Animal age.Animal us(2).id(10))

```

The algorithm places the model terms specified using the argument form together in the processed random model, here Animal followed by age.Animal. The variance structure(s) begins at the start of the first term specified in \(\operatorname{str}()\) and is expected to exactly span the whole set of terms given within the brackets. The overall size of the variance model is checked against the total number of levels of these terms, but the user must verify that the ordering is appropriate for (matches) the variance model specified.

In our example, this random model generates a combined set of random effects from the individual animal intercepts, \(\boldsymbol{u}_{I}=\left(u_{I 1} \ldots u_{I 10}\right)^{\top}\) and animal slopes, \(\boldsymbol{u}_{S}=\left(u_{S 1} \ldots u_{S 10}\right)^{\top}\), as \(\boldsymbol{u}_{I S}=\left(\boldsymbol{u}_{I}^{\top} \boldsymbol{u}_{S}^{\top}\right)^{\top}\). The consolidated term then has variance structure of the form
\[
\operatorname{var}\left(\boldsymbol{u}_{I S}\right)=\operatorname{var}\left(\left[\begin{array}{c}
\boldsymbol{u}_{I} \\
\boldsymbol{u}_{S}
\end{array}\right]\right)=\left[\begin{array}{cc}
\sigma_{I I} & \sigma_{I S} \\
\sigma_{I S} & \sigma_{S S}
\end{array}\right] \otimes \boldsymbol{I}_{10}=\left[\begin{array}{cc}
\sigma_{I I} \boldsymbol{I}_{10} & \sigma_{I S} \boldsymbol{I}_{10} \\
\sigma_{I S} \boldsymbol{I}_{10} & \sigma_{S S} \boldsymbol{I}_{10}
\end{array}\right]
\]

Here, the set of animal intercepts has a common variance \(\left(\sigma_{I I}\right)\), and the set of animal slopes has a (different) common variance ( \(\sigma_{S S}\) ). Intercepts and/or slopes from two different animals are independent, but the intercept and slope from any given animal have covariance \(\sigma_{I S}\) (or correlation \(\left.\sigma_{I S} / \sqrt{\sigma_{I I} \sigma_{S S}}\right)\). In this context, we use integers as arguments to emphasize that the arguments are specifying the size of the variance structure. For this example, id(10) can be replaced by id(Animal). In order to simplify processing of the str() arguments, ASReml expects at least 1 single term in the consolidated model term to be a variance model function with a dimension rather than a variable name as the argument, eg. us(2) in the

\subsection*{7.3 Applying variance structures to the residual error term}
example. Mostly this is quite natural as a suitable factor is not normally available to indicate the number of linear model terms being combined ( 2 in this example). The dummy identity function id(1) could be introduced to allow processing if the consolidated model term could only be expressed using variable arguments, for example,
```

str(Sire and(Dam) id(1).nrm(Animal))

```
overlays the Sire and Dam design matrices and allows the resulting effects to be modelled with a single relationship matrix parameter. This random regression model has been developed to describe the form of the \(\operatorname{str}()\) function. We note that this model is equivalent to
```

us(pol(age)).id(Animal)

```

Example 7.2 Fitting a genetic covariance between direct and maternal effects
This example fits direct effects for two traits, but maternal effects for the first trait only

where animal and dam are coded using the pedigree file.

A rather artificial example of using \(v\) greater than 1 is when we have 20 levels in a factor A and wish to use one variance for the first 8 levels and another for the last 12 levels. Then
```

str(A idv(8) idv(12))

```
will do this.

\subsection*{7.3 Applying variance structures to the residual error term}

In Release 4 the residual error term is also defined using a consolidated model term, and it now appears after a residual statement that has been introduced to specify the associated variance structure. We give five examples. Firstly, for the default situation of IID residual errors the error model definition line would be
```

residual idv(units)

```

This second example would specify a separable autoregressive spatial model of order 1 \((A R 1 \times A R 1)\) for the observations from a trial arranged in a rectangular array indexed by the data variables column and row. To apply this variance structure the observations would need to cover the whole grid, but it would not be necessary to pre-order the data file as rows within columns as ASReml uses the information in column and row to put the observations into the appropriate row within column order:
residual ar1v(column).ar1(row)
If there were 3 columns and 23 rows in the previous example, then this third example
```

residual ar1v(3).ar1(23)

```
would be an equivalent coding for the \(A R 1 \times A R 1\) model using the dimensions of the factors rather than the factor names. In this case the data records would need to be sorted in the

\subsection*{7.3 Applying variance structures to the residual error term}
order rows within columns because ASReml does not have the information needed to reorder the data internally.

The fourth example assumes variance heterogeneity among the data observations, that is, that the three groups comprising observations \(1 \ldots 23,24 \ldots 50,51 \ldots 70\) have unequal variances:
```

residual idv(23) idv(27) idv(20)

```

The fifth and final example is the default residual variance in a multivariate analysis. Specifying units as the first component is crucial as ASReml extracts the trait values by trait within unit:
```

residual id(units).us(Trait)

```

\subsection*{7.3.1 Two rules for defining the residual error term}

There are two rules in defining the residual that require special consideration:
Rule 1 The number of effects in the residual term must be equal to the number of data units included in the analysis.

Rule 2 Where a compound model term is specified for the residuals, each combination of levels of the single model terms comprising this term must uniquely identify one unit of the data. For example, in the spatial analysis of a column trial comprising 4 replicates of 24 varieties arranged as a grid of 4 rows by 24 columns (rows are replicates), a first order separable autoregressive spatial variance structure for the residuals can be specified by the consolidated model term ar1 (column). ar1 (row), where column and row are the appropriate columns in the data file. However, the number of data units must be the product of the number of levels for row and the number of levels for column; 96 in this case. If this is not the case, or if more than one unit is associated with some row column combination, ASReml will return an error message and it will not be possible to use ar1 (column).ar1(row) for residual error. If there are fewer than 96 units and each row-column combination present is associated with one unit, then the !COLUMNFACTOR/!ROWFACTOR data file qualifiers (see Table 5.2) can be used to augment the data by completing the grid to allow an appropriate analysis.

These rules will always be satisfied for a single section of data with IID errors, that is, \(\boldsymbol{R}_{v}=\boldsymbol{R}_{v_{1}}=\sigma^{2} \boldsymbol{I}_{n}\), see Example 2.2, defined either by default (ie. with no residual specified) or in terms of the units factor. However, a mismatch in both size and ordering is possible when either multiple sections are present (as in multi-environment trial (MET) analysis) or when non-identity variance model functions are used.

\subsection*{7.3 Applying variance structures to the residual error term}

\subsection*{7.3.2 Using sat() to specify the residual model term for data with sections}

Section 2.1.5 described partitioning the data observations into data sections to which separate variance structures are applied. There are three data sections in the fourth example on page 115. When variance structures are specified using dimensions rather than factor names (idv (23) for section 1, idv (27) for section \(2, \ldots\) in the example), the data must be ordered into sections and the variance structures must be ordered to match the order of the sections in the data file. It is usually more convenient to use a variable in the data file to identify sections within the data. The data will be sorted internally by ASReml (ie. the data file does not need to be ordered in any particular way) and the variance structures for sections can then be specified using the sat function, for example
```

residual sat(section).idv(units)

```
for the simple example with 3 data sections, where section is a new column in the data file to separate the data into the three sections: units \(1 \ldots 23,24 \ldots 50\) and \(51 \ldots 70\). The sat function (shorthand for section at) is new with Release 4 and performs several different tasks:
- it tells ASReml that the variance structure for the residual error term is a direct sum structure (see Section 2.1.5) where the different components of the direct sum apply to the different levels of the sectioning variable in the data file
- it prunes the levels for a section so that only the levels of factors defining the residual variance structure for that section are used in forming that variance structure.

Often sections relate to sites (or trials or experiments) in the case where several related trials are analysed together. For example, consider a MET dataset comprising data for three sites. To model the residuals at each site by a separate AR1×AR1 variance structure, we could write
residual sat(site).ar1v(column).ar1 (row)

Alternatively, an AR1 \(\times\) AR1 variance structure for sites 1 and 3 , but an IDV \(\times\) AR1 structure for site 2 , could be coded using sat either as
```

residual sat(site,1).ar1v(column).ar1(row),
sat(site,2).idv(column).ar1(row),
sat(site,3).ar1v(column).ar1(row)

```
or, more succinctly, as
```

residual sat(site,1,3).ar1v(column).ar1(row) sat(site,2).idv(column).ar1(row)

```

For each of these definitions, ASReml will determine the particular levels in row and column for each site and hence the appropriate sizes of the AR1 matrices.

\subsection*{7.5 A sequence of variance structures for the NIN data}

Important point A variance structure needs to be specified for every level of the sectioning factor, in which case
residual sat(site,1,3).ar1(row).ar1(column)
would fail as there is no variance structure specified for site 2 .

\subsection*{7.4 Identifiability}

Once all components of a compound model term have a variance model function applied, ASReml attempts to determine whether the term is identifiable, that is, the terms that can be separately estimated from (are not confounded with) other terms in the model. If the consolidated model term generates a correlation matrix, for example, the consolidated model term for A.B is specified as \(\operatorname{id}(A) \cdot \operatorname{ar1}(B)\), then it is usually the case that one wishes to fit a model with this correlation structure but to also allow the effects to have a common variance. When a correlation structure is specified for a consolidated term, either for an \(R\) or a G structure, ASReml will detect this and add a common scaled variance parameter. Some users might find it simpler and reduce confusion by specifying terms as variance terms directly. For example, \(\operatorname{id}(A) \cdot \operatorname{ar1}(B)\) should become either \(i d v(A) \cdot \operatorname{ar1}(B)\) or \(\operatorname{id}(A) \cdot \operatorname{ar1v}(B)\); it is arbitrary which variable the common variance is attached to. If more than one variance model function in the consolidated model term includes variance parameters, for example \(\operatorname{idv}(A) \cdot \operatorname{ar1v}(B)\), then the parameters will not all be identifiable and so the user must either change \(\operatorname{idv}(A)\) to \(i d(A)\) and leave \(\operatorname{ar1v(B)}\) as it is, or change \(\operatorname{ar1v(B)}\) to \(\operatorname{ar1(B)}\) and leave \(i d v(A)\) as it is.

\subsection*{7.5 A sequence of variance structures for the NIN data}

Having outlined the theory and introduced the functional specification, we pause now to consider an example. The following is a series of six variance structures of increasing complexity for the NIN column trial data (see Chapter 3 for an introduction to these data). For each example we present a code box to the right that contains the functional specification and we present a discussion of this code to the left. We present the model specification explicitly to help the user understand the logic. In some cases, experienced users will wish to take advantage of reducing typing and clarity by using default rules. These are discussed in Section 7.10.

\subsection*{7.5 A sequence of variance structures for the NIN data}

\section*{1 Randomised complete blocks analysis: blocks fixed}

The only random term in a traditional randomised complete block (RCB) analysis of the NIN data is the residual error term \(\boldsymbol{e} \sim N\left(\mathbf{0}, \sigma_{e}^{2} \boldsymbol{I}_{224}\right)\). The model therefore involves just one R structure (IDV) and no G structure. The variance model function name is idv and there is just one consolidated model term; idv(units).
```

NIN Alliance Trial 1989
variety !A
id
pid
raw
repl 4
\vdots
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety repl
residual idv(units)

```

\section*{2 RCB analysis: blocks random}

The random effects RCB model has 2 random terms to indicate that the total variation in the data is comprised of 2 components; a random replicate term \(\boldsymbol{u}_{r} \sim N\left(\mathbf{0}, \quad \sigma_{r}^{2} \boldsymbol{I}_{4}\right)\) and the residual error term, as in example 1. The !r before repl tells ASReml that repl is a random term. All random terms must be written after \(!r\) in the model specification line(s). This model involves both the original IDV R structure and an IDV G structure for the random replicate term. There are now now 2 consolidated model terms; idv(repl) and idv(units).
```

NIN Alliance Trial 1989
variety !A
id
pid
raw
repl 4
:
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety !r idv(repl)
residual idv(units)

```

\subsection*{7.5 A sequence of variance structures for the NIN data}

\section*{3a Two-dimensional spatial model with spatial correlation in one direction}

The NIN trial was actually laid out in as a rectangular array indexed in the data file by row and column. We can therefore consider fitting a spatial model for the residual term where we allow for autocorrelated errors in the row and/or column direction, see Section 7.3. However, there are missing plots in the original data. Before fitting a spatial analysis, we therefore need to fill out the data file to contain records for the missing plots (ASReml can now fill out the data file using !ROWFACTOR and !COLUMNFACTOR, see Table 5.2). This allows us to define a separable variance structure for the residual error term that is the kronecker product
```

NIN Alliance Trial 1989
variety !A
id
pid
raw
repl 4
\vdots
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety,
!r idv(repl) !f mv
residual idv(column).ar1(row)

``` of a structure for rows and a structure for columns.
The example in the code box specifies \(\boldsymbol{e} \sim N\left(\mathbf{0}, \sigma_{e_{c}}^{2} \boldsymbol{I}_{11} \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\right)\), that is, a two-dimensional first order separable autoregressive spatial structure for error but with spatial correlation in the row direction only (IDV \(\times\) AR1): ar1 (row) models the \(\boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\) correlation structure for rows and idv (column) models the IDV variance structure for columns. The consolidated model term
idv(column).ar1 (row)
directly mirrors the algebraic form \(\operatorname{var}(\boldsymbol{e})=\sigma_{e_{c}}^{2} \boldsymbol{I}_{11} \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\).

\section*{Important points}
- the same residual variance structure could be achieved by specifying id (column) . ar1v (row) which mirrors the alternate but equivalent algebraic form \(\operatorname{var}(\boldsymbol{e})=\boldsymbol{I}_{11} \otimes \sigma_{e_{r}}^{2} \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\). It is arbitrary which variable the common variance is attached to: column in the code box, row in the latter, see Section 7.4 on identifiability.
- if the correlation structure id (column). ar1 (row) was specified, ASReml would automatically add a common variance to model var \((\boldsymbol{e})=\sigma_{e}^{2} \boldsymbol{I}_{11} \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\), see Section 7.4.
- !f mv is now included in the model specification. This tells ASReml to estimate the missing values. The !f before mv indicates that the missing values are fixed effects in the sparse set of terms. An equivalent way of specifying this model is
yield \(\sim\) mu variety mv !r idv(repl)
where mv is the last fixed effect term and ASReml will include mv and succeeding terms in the sparse set.
- ASReml would report an error if the consolidated model term idv(column).ar1v(row) was specified: this would correspond to \(\operatorname{var}(\boldsymbol{e})=\sigma_{e}^{2} \boldsymbol{I}_{11} \otimes \sigma_{e_{r}}^{2} \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\) and \(\sigma_{e}^{2}\) and \(\sigma_{e_{r}}^{2}\) are unidentifiable in this case, that is, it is not possible to estimate them separately.

\subsection*{7.5 A sequence of variance structures for the NIN data}
- this is a univariate analysis in which case ASReml automatically uses the gamma parameterization for estimation, see Section 7.6. Consequently, both the sigmas and the gammas are reported. The user can force ASReml to use the sigma parameterization by placing !SIGMAP immediately after the independent variable and before \(\sim\) on the model definition line:
```

yield !SIGMAP ~ mu variety mv,

```
!SIGMAP is a new qualifier with Release 4, see also Section 7.6. In this case only the sigmas are reported but they appear twice in the output, that is, in both of the columns headed sigma in the .asr file, see Chapter 11 of the User Guide for detailed information on output formats in ASReml.

\section*{3b Two-dimensional separable autoregressive spatial model}

This model extends 3a by specifying a first order autoregressive correlation structure for columns. The R structure in this case is the kronecker product of two autoregressive correlation matrices, that is, \(\operatorname{var}(\boldsymbol{e})=\) \(\sigma_{e_{c}}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\), giving an AR1×AR1 model for error. The consolidated model term in this case is \(\operatorname{ar1v}\) (column).ar1 (row) and includes ar1v(column) to model the \(\sigma_{e_{c}}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right)\) variance structure for columns.
```

NIN Alliance Trial 1989
variety !A
id
\vdots
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety,
!r idv(repl) !f mv
residual ar1v(column).ar1(row)

```

\section*{Important points}
- the same residual variance structure could be achieved by specifying ar1 (column). ar1v(row) which mirrors the alternate but equivalent algebraic form \(\operatorname{var}(\boldsymbol{e})=\boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \sigma_{e_{r}}^{2} \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\).
- if the correlation structure ar1 (column).ar1(row) was specified, ASReml would automatically add a common variance, see Section 7.4.
- ASReml would report an error if the consolidated model term ar1v (column).ar1v(row) was specified as this would correspond to var \((\boldsymbol{e})=\sigma_{e_{c}}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \sigma_{e_{r}}^{2} \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\) and \(\sigma_{e_{c}}^{2}\) and \(\sigma_{e_{r}}^{2}\) are unidentifiable, that is, it is not possible to estimate them separately, see Section 7.4.

\subsection*{7.5 A sequence of variance structures for the NIN data}

\section*{3c Two-dimensional separable autoregressive spatial model with measurement error}

This model extends 3b by adding a random units term. Thus
\(\operatorname{var}\left(\boldsymbol{u}_{r}\right)=\sigma_{r}^{2} \boldsymbol{I}_{4}, \operatorname{var}\left(\boldsymbol{u}_{\eta}\right)=\sigma_{\eta}^{2} \boldsymbol{I}_{242}\) and
\(\operatorname{var}(\boldsymbol{e})=\sigma_{e_{c}}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\). The reserved word units tells ASReml to construct an additional random term with one level for each experimental unit, so that a second (independent) error term can be fitted. A units term is fitted in the model in cases like this where a variance structure is applied to the errors. An IDV variance structure is specified for units to model
```

NIN Alliance Trial }198
variety !A
id
\vdots
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety,
!r idv(repl) idv(units) !f mv
residual ar1v(column).ar1(row)

``` \(\sigma_{\eta}^{2} \boldsymbol{I}_{242}\). The units term is sometimes fitted in spatial models for field trial data to allow for a nugget effect. The model now has two terms at the plot (experimental unit) level, that is, a correlated structure defined as an R structure and an uncorrelated structure defined in the G structure. There are now three consolidated model terms; idv(repl), idv(units) and \(\operatorname{ar} 1 \mathrm{v}\) (column). ar1 (row). This order is reversed in 4.

\section*{4 Two-dimensional separable autoregressive spatial model defined as a G structure}

This model is equivalent to \(\mathbf{3 c}\) but with the spatial model defined as a G structure rather than an R structure. The algebraic form is written alternatively, but equivalently, to the form in \(\mathbf{3 c}\), that is
\(\operatorname{var}\left(\boldsymbol{u}_{r}\right)=\sigma_{r}^{2} \boldsymbol{I}_{4}\),
\(\operatorname{var}\left(\boldsymbol{u}_{c r}\right)=\sigma_{c r_{c}}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\) and \(\operatorname{var}(\boldsymbol{e})=\sigma_{e}^{2} I_{242}\).

\section*{Important points}
```

NIN Alliance Trial 1989
variety !A
id
\vdots
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety !r idv(repl),
ar1v(column).ar1(row),
!f mv
residual idv(units)

```
- the same G structure could be achieved by specifying ar1 (column). ar1v (row), see similar comment in example 3b
- if the variance structure \(\operatorname{ar1v}\) (column). ar1v(row) was specified ASReml would report an error, see identical comment in example 3b
- estimation is based on the gamma parameterization in which case both the estimated sigmas and the estimated gammas are reported. The user can force ASReml to use the sigma parameterization by placing the !SIGMAP qualifier immediately after the independent variable and before \(\sim\) on the model definition line. In this case only the sigmas would be reported, but they would be reported twice in the output, see Important points under example 3a.

\subsection*{7.6 Sigma versus gamma parameterization}

\subsection*{7.6 Sigma versus gamma parameterization}

From Section 2.1.1, the variance matrix of \(\boldsymbol{y}\) is
\[
\operatorname{var}(\boldsymbol{y})=\boldsymbol{Z} \boldsymbol{G}\left(\boldsymbol{\sigma}_{g}\right) \boldsymbol{Z}^{\top}+\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)
\]
see model (2.3). This is referred to as the sigma parameterization and the individual variance structure parameters in \(\boldsymbol{\sigma}_{g}\) and \(\boldsymbol{\sigma}_{r}\) are referred to as sigmas. For the case when the variance structure for the residual error term is a scaled correlation matrix, that is, \(\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)=\sigma_{e}^{2} \boldsymbol{R}_{c}\left(\boldsymbol{\gamma}_{r}\right)\), the variance matrix of \(\boldsymbol{y}\) can be written alternatively as
\[
\operatorname{var}(\boldsymbol{y})=\sigma_{e}^{2}\left(\boldsymbol{Z} \boldsymbol{G}\left(\boldsymbol{\gamma}_{g}\right) \boldsymbol{Z}^{\top}+\boldsymbol{R}_{c}\left(\boldsymbol{\gamma}_{r}\right)\right),
\]
see (2.8). This is referred to as the gamma parameterization and the variance structure parameters in \(\gamma_{g}\) and \(\gamma_{r}\) are referred to as gammas, see Section 2.1.6.

\subsection*{7.6.1 Which parameterization does ASReml use for estimation?}

By default, ASReml uses either the gamma or sigma parameterization for estimation depending on the residual specification. The current default for univariate, single section data-sets is the gamma parameterization. It is possible to over-ride this default as discussed in the following section. ASReml reports both the gammas and the sigmas when the gamma parameterization is used for estimation. For historical reasons, the sigmas are presented twice (two identical columns) when the sigma parameterization is used for estimation.

ASReml uses the sigma parameterization for analyses other than univariate single site analyses, examples including multi-section analyses, multivariate analyses and repeated measures analysis using \(R\) structures that are not the default variance model (ie. scaled identity).

\subsection*{7.6.2 Switching from the gamma to the sigma parameterization}

ASReml uses the gamma parameterization by default for univariate single section analyses, see above. However, !SIGMAP is a new qualifier with Release 4 that enables the user to force ASReml to use the sigma parameterization this case. This is achieved by placing !SIGMAP immediately after the independent variable and before \(\sim\) on the model definition line. For example,
```

yield !SIGMAP ~ mu variety !r idv(repl) !f mv
residual idv(units)

```
would force ASReml to use the sigma parameterization in NIN example 3a, see Section 7.5.
Table 7.3 gives the variance model specification for each of the six NIN examples (column 3), the individual terms in \(\boldsymbol{G}\left(\boldsymbol{\sigma}_{g}\right)\) and \(\boldsymbol{R}_{v}\left(\boldsymbol{\sigma}_{r}\right)\) under the sigma parameterization (column 4), the sigmas that are estimated under this parameterization (column 5), the individual terms in \(\boldsymbol{G}\left(\boldsymbol{\gamma}_{g}\right)\) and \(\boldsymbol{R}_{v}\left(\boldsymbol{\gamma}_{r}\right)\) under the gamma parameterization (column 6) and the gammas that are estimated under this parameterization (column 7).

Table 7.3: \(G\) structure for the random terms (magenta) and \(R\) structure for the residual error term (cyan) under both the sigma and gamma parameterizations, and the corresponding sigma(s)/gamma(s) under each parameterization for the series of NIN data examples
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{no.} & \multirow[b]{2}{*}{definition} & \multirow[b]{2}{*}{variance model specification} & \multicolumn{2}{|l|}{sigma parameterization} & \multicolumn{2}{|l|}{gamma parameterization} \\
\hline & & & \[
\begin{aligned}
& G\left(\sigma_{g}\right) \\
& R_{v}\left(\sigma_{r}\right)
\end{aligned}
\] & sigma(s) & \[
\begin{aligned}
& G\left(\gamma_{g}\right) \\
& R_{c}\left(\gamma_{r}\right)
\end{aligned}
\] & gamma(s) \\
\hline 1 & RCB analysis: blocks fixed & residual idv(units) & \(\sigma_{e}^{2} \boldsymbol{I}_{224}\) & \(\sigma_{e}^{2}\) & \(I_{224}\) & none \\
\hline 2 & RCB analysis: blocks random & ```
!r idv(repl)
residual idv(units)
``` & \[
\begin{aligned}
& \sigma_{r}^{2} \boldsymbol{I}_{4} \\
& \sigma_{e}^{2} \boldsymbol{I}_{224}
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{r}^{2} \\
& \sigma_{e}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \gamma_{r} \boldsymbol{I}_{4} \\
& I_{224}
\end{aligned}
\] & \(\gamma_{r}\) \\
\hline 3 a & Two-dimensional spatial model correlation in one direction & ```
!r idv(repl)
residual idv(column).ar1(row)
``` & \[
\begin{aligned}
& \sigma_{r}^{2} \boldsymbol{I}_{4} \\
& \sigma_{e_{c}}^{2} \boldsymbol{I}_{11} \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{r}^{2} \\
& \sigma_{e_{c}}^{2}, \rho_{r}
\end{aligned}
\] & \[
\begin{aligned}
& \gamma_{r} \boldsymbol{I}_{4} \\
& \boldsymbol{I}_{11} \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \gamma_{r} \\
& \rho_{r}
\end{aligned}
\] \\
\hline - & Two-dimensional separable autoregressive spatial model & ```
!r idv(repl)
residual ar1v(column).ar1(row)
``` & \[
\begin{aligned}
& \sigma_{r}^{2} \boldsymbol{I}_{4} \\
& \sigma_{e_{c}}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{r}^{2} \\
& \sigma_{e_{c}}^{2}, \rho_{r}, \rho_{c}
\end{aligned}
\] & \[
\begin{aligned}
& \gamma_{r} \boldsymbol{I}_{4} \\
& \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \gamma_{r} \\
& \rho_{r}, \rho_{c}
\end{aligned}
\] \\
\hline 3c & Two-dimensional separable autoregressive spatial model with measurement error & ```
!r idv(repl),
idv(units)
residual ar1v(column).ar1(row)
``` & \[
\begin{aligned}
& \sigma_{r}^{2} \boldsymbol{I}_{4} \\
& \sigma_{\boldsymbol{\eta}}^{2} \boldsymbol{I}_{224} \\
& \sigma_{e_{c}}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{r}^{2} \\
& \sigma_{\eta}^{2} \\
& \sigma_{e_{c}}^{2}, \rho_{r}, \rho_{c}
\end{aligned}
\] & \[
\begin{aligned}
& \gamma_{r} \boldsymbol{I}_{4} \\
& \gamma_{\eta} \boldsymbol{I}_{234} \\
& \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \gamma_{r} \\
& \gamma_{\eta} \\
& \rho_{r}, \rho_{c}
\end{aligned}
\] \\
\hline 4 & Two-dimensional separable autoregressive spatial model defined as a G structure & \[
\begin{aligned}
& \text { !r idv(repl), } \\
& \text { ar1v(column).ar1(row) } \\
& \text { residual idv(units) }
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{r}^{2} \boldsymbol{I}_{4} \\
& \sigma_{c r_{c}}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right) \\
& \sigma_{e}^{2} \boldsymbol{I}_{224}
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{r}^{2} \\
& \sigma_{c r_{c}}^{2}, \rho_{r}, \rho_{c} \\
& \sigma_{e}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \gamma_{r} \boldsymbol{I}_{4} \\
& \gamma_{c r_{c}} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right) \\
& \boldsymbol{I}_{224}
\end{aligned}
\] & \[
\begin{aligned}
& \gamma_{r} \\
& \gamma_{c r_{c}}, \rho_{r}, \rho_{c}
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{7.7 Variance model function qualifiers}

\subsection*{7.7 Variance model function qualifiers}

A consolidated model term is comprised of one or more covariance components, where a covariance component is a component of the model term to which a variance model function has been applied, see Section 2.1.8 and Table 7.2. All of the covariance components so far have been of the form
vmfname(component)
where vmfname is the variance model function name (in this font in first column of Table 7.6 ) and component is a component in the model term. Two single covariance components are idv(repl) and ar1 (row), see Table 7.2.

A general form for a covariance component is vmfname(component qualifiers)
where qualifiers is an optional list of one or more qualifiers to be applied to the variance structure being defined. A simple example of this is the extension of idv (repl) to idv (repl ! INIT 0.65 ) which specifies an IDV structure of dimension 4 for replicates (NIN example 2) with an initial variance of 0.65 for the variance component associated with replicates under the sigma parameterization, or an initial variance component ratio of 0.65 for the variance component ratio associated with replicates under the gamma parameterization.

Note that a variance structure of a particular dimension, \(\omega\) say, can been specified directly as
vmfname( \(\omega\) qualifiers)
For example, idv (3) defines the IDV variance structure of dimension 3, that is, \(\sigma^{2} \boldsymbol{I}_{3}\), and idv (3 ! INIT 1.1) specifies an initial value of 1.1 for the associated variance component under the sigma parameterization or variance ratio under the gamma parameterization. Likewise, ar1(10) specifies an autoregressive correlation structure (AR1) of order 10 and ar1 (10 ! INIT 0.4) specifies this same structure with an initial autocorrelation parameter of 0.4. A simple variance component \(\sigma^{2}\) would be defined as idv(1). Note that an integer value for the first argument is only valid in variance model functions associated with residual terms and str().

The full list of variance model function qualifiers is in Table 7.4.

\subsection*{7.7.1 Parameter equality constraints \(!=s\)}

Parameters in a variance model can be set to be equal using the \(!=s\) qualifier (Table 7.4) where \(s\) is a string of letters and/or zeros. Positions in the string correspond to the position of the parameters in the list of parameters for the particular variance model:

Table 7.4: Variance model function qualifiers available in ASReml
\begin{tabular}{|c|c|c|}
\hline status & qualifier & description \\
\hline existing & \(!=s\) & \(s\) is a list of codes that link parameters sharing a common value; details in Section 7.8.2. \\
\hline New R4 & ! COORD \(v\) & \begin{tabular}{l}
provides coordinates for mapping the effects so that a spatial model can be applied to the effects. It is needed when the coordinates are not in the data file, for example \\
\(\exp (T r a i t\) !COORD 12.53 .558 ), see Section 7.7.2.
\end{tabular} \\
\hline existing & ! Fi & is used with the own() variance model function, see Section 7.7.3. The argument \(i\) is passed to your own program. \\
\hline existing & ! Gs & \(s\) is a list of codes \(\mathrm{F}, \mathrm{Z}, \mathrm{P}\) or U , one for each parameter, specifying whether the parameter is to be Fixed at it's initial value, held at Zero (if legal), kept in the Parameter space or is Unrestricted, see Section 7.7.4 \\
\hline New R4 & \(!\) INIT \(v\) & \(v\) is the list of initial values for the variance structure parameters. If. initial values can be obtained from the .msv, .rsv or .tsv file, they override these values, see Section 7.7.5 \\
\hline existing & !SUBSECTION \(f\) & \(f\) is a factor in the data that breaks the section into independent subsections, with subsections having common variance parameters, see Section 7.7.6 \\
\hline existing & \(!T s\) & is used with the own() variance model function to set the parameter types, see Sections 7.7.7 and 7.7.3 \\
\hline existing & ! USE \(t\) & \(t\) is a compound model term component used elsewhere in the model; allows this variance structure and its parameters to be the same as that used for \(t\), see Section 7.7.8 for an example. \\
\hline
\end{tabular}
- all parameters with the same letter in the structure are constrained to be equal
- \(1-9, \mathrm{a}-\mathrm{z}\) and \(\mathrm{A}-\mathrm{Z}\) are all unique so that 61 equalities can be specified. 0 and . indicate that the corresponding parameter is not related to any other parameter. A colon generates a sequence, that is, \(a: e\) is the same as abcde
- putting \% as the first character in \(s\) makes the interpretation of codes absolute (so that they apply across structures)
- putting * as the first character in \(s\) indicates that numbers are for repeat counts, \(\mathrm{A}-\mathrm{Z}\) are equality codes and are not different from a-z giving only 26 equalities. In this case only . represents unrelated to any other parameter. Thus !=*.3A2. is equivalent to !=.AAA. . or ! = Oaaa00 or !=BAAACD. Some users might find the contractions appealing, other users find an explicit definition less error-prone.

Examples are presented in Table 7.5. Important This syntax is limited in that it cannot apply relationships to simple variance components (random terms that do not have an explicit variance structure) or to implicit residual variance parameters. The ! VCC syntax is required

\subsection*{7.7 Variance model function qualifiers}
for these cases.
Table 7.5: Examples of constraining variance parameters in ASReml
\begin{tabular}{|c|c|}
\hline ASReml code & action \\
\hline \multirow[t]{2}{*}{} & constrains all parameters corresponding to A to be equal; similarly for B and C. The fourth parameter symbol D is only associated with one parameter and can be replaced by 0 to indicate that it is unconstrained. This sequence applied to an unstructured (US) 44 matrix would make it banded, that is \\
\hline & \begin{tabular}{l}
A \\
B A \\
C B A \\
D C B A
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { us(site ! GP !=OAOAAO, } \\
& \text { ! INIT . } 3 \text {. } 4 \text {. } 1 \text {. } 1 \text {. } 3 \text { ) }
\end{aligned}
\] & this example defines a structure for the genotype by site interaction effects in a multi-environment trial with 3 sites, in which the genotypes are independent random effects within sites but are correlated across sites with equal covariance. The initial value for the common covariance is 0.1 . \\
\hline fa2(site !G4PZ3P4P !=00000000VVVV, !INIT 4*. 9 0 3*. 1 4*.2).gen & a factor analytic model of order 2 for 4 sites, with equal variance across sites, is specified using this code. For the fak variance model functions, ASReml orders the parameters as the loadings followed by the specific variances. In this example, the first loading in the second factor is constrained to be equal to zero for identifiability. P restricts the magnitude of the loadings and the variances to be positive. \\
\hline \begin{tabular}{l}
xfa2(site !=VVVVO0000000, \\
\#contracted form \\
\#! =*4V8. \\
!4P4PZ3P, \\
!INIT \(4 * 0.24 * 1.203 * 0.3\) ).gen
\end{tabular} & code for a factor analytic model of order 2 for 4 sites, in which the specific variances are all equal. For the \(\mathrm{xf} a k\) variance model functions, ASReml orders the parameters as the specific variances followed by the loadings (note that this is different to the ordering for the \(\mathrm{fa} k\) variance model functions, see previous example). In this example, the first loading in the second factor is constrained to be equal to zero for identifiability. \\
\hline
\end{tabular}

\subsection*{7.7.2 New R4 Ways to supply distances in one-dimensional metric based models ! COORD \(v\)}

Power models rely on the definition of distance for the associated term. Information for determining distances is supplied either implicitly by applying the variance model function to the fac() of the coordinate variables, for example
```

expv(fac(X))

```

\subsection*{7.7 Variance model function qualifiers}
where X contains the positions, or explicitly with the ! COORD qualifier, for example expv(Time !COORD \(x\) )
where \(x\) is a vector of distances which has to be of length the number of levels of Time. For computational reasons it is useful to have the range of \(x\) between 5 and 50 .

\subsection*{7.7.3 Your own program ! Fi}

The OWN variance structure is a facility whereby (advanced) users may specify their own variance structure. This facility requires the user to supply a program MYOWNGDG that reads the current set of parameters, forms the \(\boldsymbol{G}\) matrix and a full set of derivative matrices, and writes these to disk. Before each iteration, ASReml writes the own parameters to a file, runs MYOWNGDG (it assumes MYOWNGDG forms the \(\boldsymbol{G}\) and derivative matrix) and then reads the matrices back in. An example of MYOWNGDG.f90 is distributed with ASReml. It duplicates the AR1 and AR2 variance structures. The following job fits an AR2 structure using this program.
```

Example of using the OWN structure
rep
blcol
blrow
variety 25
yield
barley.asd !skip 1 !OWN MYOWN.EXE
y ~ variety
residual ar1(10).own2(15 !INIT .2 .1 !TRR !F1)

```

The file written by ASReml has extension .own and appears as follows:
```

 15 2 1
 0.6025860D+000.1164403D+00
This file was written by asreml for reading by your MYOWNGDG program
asreml writes this file, runs your program and then reads
shfown.gdg
which it presumes has the following format:
The first lines should agree with the top of this file
specifying the order of the matrices (15)
the number of variance structure parameters (2)
and a control parameter you can specify (1).
These are written in (3I5) format. They are followed by
the list of variance parameters written in (6D13.7) format.
Follow this with 3 matrices written in (6D13.7) format.
These are to be each of 120 elements being lower triangle
row-wise of the G matrix and its derivatives with respect
to the parameters in turn.

```

This file contains details about what is expected in the file written by your program. The filename used has the same basename as the job you are running with extension .own for the

\subsection*{7.7 Variance model function qualifiers}
file written by ASReml and .gdg for the file your program writes. The type of the parameters is set with the ! T qualifier, see Section 7.7.7, and the control parameter is set using the ! F qualifier.
- ! F1 applies to the own variance model function. With own, the argument of \(!F\) is passed to the MYOWNGDG program as an argument the program can access. This is the mechanism that allows several OWN models to be fitted in a single run.
- ! \(\mathrm{T} s\) is used to set the type of the parameters. It is primarily used in conjunction with the own variance model function as ASReml knows the type of the parameters in other cases. The valid type codes are given in Section 7.7.7.

\subsection*{7.7.4 Parameter space constraints ! Gs}

Each parameter has an associated constraint code which may be expressed explicitly with the qualifier ! Gs, where \(s\) is the code. The following is a list of the possible constraint codes.
\begin{tabular}{lll} 
code & constraint type & description \\
\hline P & in the space & \begin{tabular}{l} 
P is the default in most cases and attempts to keep the parameter \\
in the theoretical parameter space. It is activated when the update \\
of a parameter would take it outside its space. For example, if \\
an update would make a variance negative, the negative value \\
is replaced by a small positive value. Under the !GP condition, \\
repeated attempts to make a variance negative are detected and \\
the value is then fixed at a small positive value. This is shown in \\
the output in that the parameter will have the code B rather than \\
P reported in the variance component table.
\end{tabular} \\
U & unrestricted \begin{tabular}{l} 
U does not limit the updates to the parameter. This allows vari- \\
ance parameters to go negative and correlation parameters to ex- \\
ceed \(\pm 1\). Negative variance components may lead to problems; the \\
mixed model coefficient matrix may become non-positive definite. \\
In this case the sequence of REML log-likelihoods may be erratic \\
and you may need to experiment with starting values.
\end{tabular} \\
F fixes the parameter at its starting value. \\
Z & fixed & zero
\end{tabular}

For structures with multiple parameters, the form ! \(G X X X X\) can be used to specify F, P, U or Z for the parameters individually. A shorthand notation allows a repeat count before a code letter. Thus ! GPPPPPPPPPPPPPPPZPPPZP could be written as !G14PZ3PZP.

For a US model, ! GP makes ASReml attempt to keep the matrix positive definite. After each Al update, it extracts the eigenvalues of the updated matrix. If any are negative or zero, the

AI update is discarded and an EM update is performed. If the highest LogL value relates to a non-positive definite form for the matrix, ASReml may perform hundreds of iterations and never converge. Several forms of EM update are possible (see !EMFLAG) and the PXEM option will converge faster. Note that this option is not available with the nrm or grm functions. Note also, that the EM update is applied to all of the variance parameters in the particular US model and cannot be applied to only a subset of them. EM updates can be slow to converge and an alternative parameterization using a factor analysis may converge faster and give a more parsimonious parameterization. It may be that there is no variance associated with some levels of the matrix, in which case the dimension of the matrix should be reduced.

\subsection*{7.7.5 New R4 Initial values ! INIT \(v\)}

Prior to Release 4 it was necessary to supply initial values for variance structure parameters except for the default IDV variance structure for a random model term, where the default initial variance (ratio) parameter value was 0.1 . In Release 4 , it is not generally necessary to supply initial values. In this release, ASReml provides starting or initial values for variance structure parameters based on knowledge of the phenotypic variance of the response. Occasionally these initial values are not adequate and more appropriate values will need to be supplied by the user. In this case the user may have good prior information that can be utilized in forming initial values.

There are several ways to provide initial values. The particular choice will depend on how many values and other variance model function qualifiers are to be specified. The initial values can be provided in a number of ways:
- in the variance structure specification, for example
ar1 (row ! INIT 0.35)
sets the initial value of the autocorrelation parameter for ar1 (row) at 0.35 ; when this form is used, all of the values required by the structure must be specified
- by modifying the .tsv or .msv file created in a preliminary run (Section 7.9.1)
- by supplying an .rsv file using !CONTINUE, Section 7.9.2.

\section*{Important points}
- when initial values are supplied using ! INIT, there must be the correct number of values and they must be in the appropriate order, for example, for us() the initial values need to be supplied in the order lower triangle row-wise
- for the gamma parameterization (Section 7.6), the variance structure parameters will be gammas; in this case the initial values for the gammas that are variance component ratios
will be interpreted by ASReml as ratios.

\subsection*{7.7.6 About subsections !SUBSECTION \(f\)}

The !SUBSECTION qualifier provides an extension to the sat function of Section 7.3.2 for modelling the residual variance. It allows the case of modelling multiple independent sections of correlated observations with a common variance structure and common parameters within sections. The sections can be of different sizes and any homogeneous variance correlation model in Table 7.6 may be used for the variance structure. This gives an R structure of the form
\[
\boldsymbol{R}_{v}=\oplus_{i=1}^{s} \boldsymbol{R}_{v_{i}} \text { where } \boldsymbol{R}_{v_{i}}=\oplus_{j=1}^{s_{i}} \boldsymbol{\Sigma}_{i j}\left(\boldsymbol{\phi}_{i}\right)
\]
so \(\boldsymbol{R}_{v_{i}}\) may have a direct sum structure with common parameters. Note that, !SUBSECTION is only available when the residual variance function is expressed in terms of one variance function. !SUBSECTION \(f\) performs two tasks similar to those described in Section 7.3.2, that is, defining a direct sum structure for the residual vector in a section, with the number of subsections in section \(i, s_{i}\), given by the number of levels of the factor \(f\), and pruning the levels of the factor defining the variance structure within each section but allowing common variance parameters across sections. The data needs to be sorted in order of the variable \(f\). The following code would specify a common AR1 structure across sections, assumed sorted in to the appropriate order within the section variable, with an initial spatial autocorrelation parameter of 0.5
```

residual ar1(units !INIT 0.5 !SUBSECTION section)

```

If there was data sorted on date within plot then we might use
```

residual exp(date !INIT 0.2 !SUBSECTION plot)

```
to, specify a common EXP structure across plots.

\subsection*{7.7.7 Parameter types !Ts}

Each variance parameter also has a type which may be set explicitly with the qualifier ! \(\mathrm{T} s\), where \(s\) is the type code. The following is a list of the possible parameter types and their code. They are usually set internally, are reported in the .tsv file and are used to define the parameter space.
\begin{tabular}{lll} 
type & code & action if ! GP is set \\
\hline variance & V & forced positive \\
variance ratio & G & forced positive \\
correlation & R & \(-1<r<1\) \\
covariance & C & \\
positive correlation & P & \(0<r<1\) \\
loading & L & \\
\hline
\end{tabular}

\subsection*{7.7 Variance model function qualifiers}

\subsection*{7.7.8 Equating variance structures !USE \(t\)}

In some plant breeding applications, it can be convenient to define a variance structure as the sum of two simpler terms. For example, given 1000 entries representing 50 related families, where relationships were derived from markers, the full relationship matrix (inverse) is dense. But it can be well approximated as the sum of a family component and a diagonal entry component. The reformulation gives a sparser (faster) formulation. But now we have two terms to interact with xfa1 (dtrial) and both must have the same parameters. That is, instead of fitting
```

xfa1(dTrial).grm3(entry)

```
we fit
xfa1 (dTrial).grm1 (family) xfa1 (dTrial).grm2 (entry)
requiring both xfa1 terms have the same parameters.

If there are only a few parameters, this can be achieved directly as follows:
```

!ASSIGN QP !GPFPFP
!ASSIGN QE !=%ABCDEFGH
!ASSIGN QI !INIT 0.72631 0.000 . 242713 0.000 . 882465 . 846305 .04419 . 743393
xfa1(dTrial \$QP \$QE \$QI).grm1(family),
xfa1(dTrial \$QP \$QE \$QI).grm2(entry)

```

However, for a larger term, the number of parameters required may exceed the available letters in the alphabet. In this case !VCC can be used:
```

<DATAFILE NAME> !VCC 1
xfa1(dTrial \$QP \$QI).grm1(family),
xfa1(dTrial \$QP \$QI).grm2(entry)
21 29 !BLOCKSIZE 8 \#parameters 21:28 are equal to parameters 29:36 pairwise

```

An ever better option in this case is to use just one structure twice. The following code associates xfa1(dTrial) in xfa1(dTrial).giv2(entry)
with xfa1(dTrial) in xfa1(dTrial).giv1(family), that is, both terms point to the one structure definition:
```

xfa1(dTrial \$QP \$QI).grm1(family),
xfa1(dTrial !USE xfa1(dTrial)).grm2(entry)

```

Table 7.5 gives examples of constraining variance parameters in ASReml.

\subsection*{7.8 Setting relationships among variance structure parameters}

\subsection*{7.8 Setting relationships among variance structure parameters}

\subsection*{7.8.1 Simple relationships among variance structure parameters}

It is possible to define simple equality relationships between variance structure parameters using the \(!=s\) qualifier, see Section 7.8.2 and Table 7.4. More general relationships between variance structure parameters can be defined by placing the ! VCC \(c\) qualifier on the data file definition line. Unlike the case of parameter equality, all parameters can be accessed and the linear relationship is not limited to equality. However, identification of the parameters is not as easy. Each variance structure parameter \(\left(\gamma_{-} i\right)\) is allocated a number \(i\) internally. These numbers are reported in the .tsv file and some are reported in the structure input section of the .asr file. These numbers are used to specify which parameters are to be constrained using this method. Warning Unfortunately, the parameter numbers usually change if the model is changed.
- ! VCC \(c\) specifies that there are \(c\) lines defining parameter relationships,
- If !VCC is used a residual line is required and the parameter relationship lines must occur after this residual line,
- each relationship is specified in a separate line of the form
\(i \quad k * v_{-} k\)
simple case
\(i \quad k * v_{-} k \quad \ldots \quad p * v_{-} p\) !BLOCKSIZE \(n\)
general case

In this specification,
\(-i\) and \(k \ldots p\) are the numbers of the specific variance model parameters and \(v \_m, m=\) \(k \cdots p\) are the associated scale coefficients such that \(\gamma_{-} m \times V \_m\) is equal in value to \(\gamma_{-} i\), for example
\(57 * 1\) indicates that \(\gamma_{-} 7 \times 1=\gamma_{-} 5\), ie. parameter 7 is equal to parameter 5
\(57 * .1\) indicates that parameter 7 is a tenth of parameter 5
- * indicates the presence of the scale coefficient \(v \_m\) for the parameter \(m\);
- if the coefficient is 1 indicating parameter equality, the * 1 can be omitted, for example 57 is a simplified coding of the first example
- if the coefficient is -1
\(i \quad k *-1\) can be simplified to
\(i \quad-k\)
for example, 5-7 indicates that parameter 7 is has the same magnitude but opposite sign to parameter 5
- the !BLOCKSIZE \(n\) qualifier is used when constraints of the same form are required on

\subsection*{7.8 Setting relationships among variance structure parameters}
blocks of \(n\) contiguous parameters, for example,
2129 !BLOCKSIZE 8 equates parameters 29 with 21,30 with \(22, \ldots 36\) with 28.
- a variance structure parameter may only be included in one relationship line; to equate several components, put them all in one list on one line
- where the relationship applies among simple model terms (those without an explicit variance structure, for example units), the model term name may be given rather than the parameter number.

These examples are summarized in the following table:
\begin{tabular}{ll} 
ASReml code & action \\
\hline \begin{tabular}{ll}
\(57 * 1\) & parameter 7 equals parameter 5 \\
57 & \(7 * .1\) \\
\(5-7\) & simple coding for \(57 * 1\) \\
323435373839 & parameter 7 is a tenth of parameter 5 \\
2129 !BLOCKSIZE 8 & \begin{tabular}{l} 
parameter 7 is the negative of parameter 5 \\
for a ( \(4 \times 4\) ) US matrix given by parameters \(31 \ldots 40\), the covari- \\
ances (parameters \(32 \ldots 39\) ) are forced to be equal
\end{tabular} \\
units -uni (check) & \begin{tabular}{l} 
equates parameters 29 with 21,30 with \(22, \ldots 36\) with 28.
\end{tabular} \\
parameter associated with model term uni (check) has the same \\
magnitude but opposite sign to the parameter associated with \\
model term units.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{7.8.2 Fitting linear relationships among variance structure parameters}

The user may wish to define relationships between particular variance parameters. For example, consider an experiment in which two or more separate trials are sown adjacent to one another at the same trial site, with trials sharing a common plot boundary. In this case it might be sensible to fit the same spatial parameters and error variances for each trial. In other situations it can be sensible to define the same variance structure over several model terms. ASReml 3 catered for equality and multiplicative relationships among variance parameters. In ASReml 4 linear relationships among variance structure parameters can be defined through a simple linear model and by supplying a design matrix for a set of parameters. The design matrix is supplied as an ascii file containing a row for each parameter in a set of contiguous parameters and a column for each new parameter. This design matrix is associated with the job through a statement after the residual model definition line(s), of the form:
VCM parameter_number_list new filename
where parameter_number_list is a list of parameters in the set, and can be abbreviated to first and last if all the intermediate parameters are in the set, new is the number of new

\subsection*{7.8 Setting relationships among variance structure parameters}
parameters and filename is the name of the file containing the design matrix.
For example, the Wolfinger rats example involves modelling a \(5 \times 5\) symmetric residual matrix.

Wolfinger Rat data
treat ! A
wt0 wt1 wt2 wt3 wt4
subject * ! = V0
wolfrat.dat !skip 1 !ASUV !VCC 2
wt0 wt1 wt2 wt3 wt4 Trait treat Trait.treat
120
27 O ID \#error variance
Trait O US * \#* indicates generates initial values
\#uses 15 parameters numbered 5-19 generating symmetric matrix
\#5
\#6 7
\#8 910
\(\begin{array}{llll}\# 11 & 12 & 13 & 14\end{array}\)
\(\begin{array}{lllll}\# 15 & 16 & 17 & 18 & 19\end{array}\)

Wolfinger (1996) reports the fitting of the HuynhFeldt variance structure to this data. This structure is of the form
\[
\begin{aligned}
\boldsymbol{\sigma}_{i i} & =\boldsymbol{\sigma}_{n i} \\
\boldsymbol{\sigma}_{i j} & =1 / 2\left(\boldsymbol{\sigma}_{n i}+\boldsymbol{\sigma}_{n j}\right)-\boldsymbol{\sigma}_{n o} \quad j<i \leq p
\end{aligned}
\]

In the rats example, the relationship between the original and new parameters is \(\boldsymbol{\sigma}=\boldsymbol{M} \boldsymbol{\sigma}_{n}\) where \(\boldsymbol{\sigma}\) and \(\boldsymbol{\sigma}_{n}\) are \(15 \times 1\) and \(6 \times 1\) vectors respectively, and \(\boldsymbol{M}\) is a \(15 \times 6\) matrix:
\begin{tabular}{lllllr}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0.5 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & -1 \\
0 & 0.5 & 0.5 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0.5 & 0 & 0 & 0.5 & 0 & -1 \\
0 & 0.5 & 0 & 0.5 & 0 & -1 \\
0 & 0 & 0.5 & 0.5 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0.5 & 0 & 0 & 0 & 0.5 & -1 \\
0 & 0.5 & 0 & 0 & 0.5 & -1 \\
0 & 0 & 0.5 & 0 & 0.5 & -1 \\
0 & 0 & 0 & 0.5 & 0.5 & -1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{tabular}

A way of fitting this model would be to put the matrix values in a file HuynhFeldt.vcm and
use
VCM 5196 HuynhFeldt.vcm \#parameters 5 to 19 explained in terms of 6 parameters
Note that if the user fits another model with differing numbers of variance structure parameters so that the variance structure parameters are renumbered, then all the user needs to do to continue with the same relationships is to change the parameter_number_list parameters on the VCM line.

Important The VCM statement must be placed after any residual definition line(s).
The new qualifier !DESIGN on the datafile line causes ASReml to write the design matrix, not including the response variable, to a . des file. It allows ASReml to create the design matrix required by the VCM process, see Section 7.8.2 above. For example, using a control file vcmdes.as containing
```

Create VCM Design for H-F model
Row *
Col *
Off
Y !=V0
vcmdes.asd !DESIGN
Y ~ Row and(Row,-0.5) and(Col,0.5) Off

```
and a data file vcmdes.asd containing
\begin{tabular}{llr}
1 & 1 & 0 \\
2 & 1 & -1 \\
2 & 2 & 0 \\
3 & 1 & -1 \\
3 & 2 & -1 \\
3 & 3 & 0 \\
4 & 1 & -1 \\
4 & 2 & -1 \\
4 & 3 & -1 \\
4 & 4 & 0 \\
5 & 1 & -1 \\
5 & 2 & -1 \\
5 & 3 & -1 \\
5 & 4 & -1 \\
5 & 5 & 0
\end{tabular}
then the file vcmdes.des will be generated which contains the values used in fitting the variance model for the HuynhFeldt model given in Section 7.8.2.

\subsection*{7.9 Ways to present initial values to ASReml}

In complex models, the Average Information algorithm can have difficulty maximising the REML log-likelihood when starting values are not reasonably close to the REML solution.

\subsection*{7.9 Ways to present initial values to ASReml}

ASReml has several internal strategies to cope with this problem. When the user needs to provide better starting values than those generated by ASReml three of the methods are:
- inserting explicit initial values in the .as file (for example using ! INIT),
- doing a preliminary run to obtain .tsv or .msv files and then modifying the parametric information in one of those files, Section 7.9.1,
- fitting a simpler model and using parameter values derived from the simpler model, through the .rsv file, Section 7.9.2.

\subsection*{7.9.1 Using templates to set parametric information associated with variance structures using .tsv and .msv files}

ASReml 3 needed initial values for most variance structure parameters and allowed specification of parametric constraints and relationships (equality and scale) between parameters to be defined. This parametric information was interspersed within the structure definition. Release 4 allows an alternative way of specifying this parametric information, essentially constructing a table in a .tsv file, with the rows labelled by the specific parameters, columns for initial values and parametric constraints, and two columns that allow specification of relationships. This .tsv file is written by ASReml after the input file has been parsed; using * to represent initial values and setting !MAXITER 0 gives an easy construction. Once the .tsv file has been edited it can be read by inserting !TSV on the data file line. As an example
```

Wolfinger Rat data
treat !A
wt0 wt1 wt2 wt3 wt4
subject * !=VO
wolfrat.dat !skip 1 !ASUV !MAXITER 0
wt0 wt1 wt2 wt3 wt4 Trait treat Trait.treat
120
27 0 ID \#error variance
Trait O US * \#* indicates generates initial values

```
generates a .tsv file.
```


This .tsv file is a mechanism for resetting initial parameter values

by changing the values here and rerunning the job with !TSV

You may only change values in the last 4 fields.

Fields are:

GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale.

5, "units.us(Trait);us(Trait)_1", G, P, 4.7911110 , 5, 1
6, "units.us(Trait);us(Trait)_2", G, P, 5.0231481 , 6, 1
7, "units.us(Trait);us(Trait)_3", G, P, 15.298889 , 7, 1
8, "units.us(Trait);us(Trait)_4", G, P, 4.8438271 , 8, 1
9, "units.us(Trait);us(Trait)_5", G, P, 11.264815 , 9, 1

```
```

10, "units.us(Trait);us(Trait)_6", G, P, 26.095692 , 10, 1
11, "units.us(Trait);us(Trait)_7", G, P, 4.6882715 , 11, 1
12, "units.us(Trait);us(Trait)_8", G, P, 10.824074 , 12, 1
13, "units.us(Trait);us(Trait)_9", G, P, 27.332887 , 13, 1
14, "units.us(Trait);us(Trait)_10", G, P, 71.875403 , 14, 1
15, "units.us(Trait);us(Trait)_11", G, P, 3.9083333 , 15, 1
16, "units.us(Trait);us(Trait)_12", G, P, 10.292592 , 16, 1
17, "units.us(Trait);us(Trait)_13", G, P, 34.137962 , 17, 1
18, "units.us(Trait);us(Trait)_14", G, P, 69.287036 , 18, 1
19, "units.us(Trait);us(Trait)_15", G, P, 141.97296 , 19, 1

```

Parameter constraints and initial values can be changed by editing the values in the PSpace and Initial_value columns. Scale relationships can be introduced by noting that the full set of parameters can be related to a subset of parameters and scale factors such as
parameter \(=\) subset parameter * scale
or
GN column parameter, RP_GN column parameter * RP_scale value
where GN, RP_GN and RP_scale are columns in the .tsv file. The relationships generated by
VCC 2
\(56811157 * 29 * 212 * 216 * 2\) \#parameters 681115 are equal to 5
\#7 91216 are twice 5
101317 \#parameters 13 and 17 are equal to 10
\#the full set of parameters 5-19 can therefore be expressed in terms of the subset parameters 5, \(10,14,18\) and 19
can be introduced by editing the RN_GN and RP_scale columns. Some users would prefer to insert initial values into this .tsv file under the Initial_value column. As an example, the file below contains values based on using 4.8, 26, 70, 35 and 70 for parameters 5, 10, 14, 18 and 19. The data values in the .tsv file become
```


GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale.

5, "units.us(Trait);us(Trait)_1", G, P, 4.8 , 5, 1.0000
6, "units.us(Trait);us(Trait)_2", G, P, 4.8 , 5, 1.0000
7, "units.us(Trait);us(Trait)_3", G, P, 9.6 , 5, 2.0000
8, "units.us(Trait);us(Trait)_4", G, P, 4.8 , 5, 1.0000
9, "units.us(Trait);us(Trait)_5", G, P, 9.6 , 5, 2.0000
10, "units.us(Trait);us(Trait)_6", G, P, 26 ,10, 1.0000
11, "units.us(Trait);us(Trait)_7", G, P, 4.8 , 5, 1.0000
12, "units.us(Trait);us(Trait)_8", G, P, 9.6 , 5, 2.0000
13, "units.us(Trait);us(Trait)_9", G, P, 26 , 10, 1.0000
14, "units.us(Trait);us(Trait)_10", G, P, 70 , 14, 1.0000
15, "units.us(Trait);us(Trait)_11", G, P, 4.8 , 5, 1.0000
16, "units.us(Trait);us(Trait)_12", G, P, 9.6 , 5, 2.0000
17, "units.us(Trait);us(Trait)_13", G, P, 26 , 10, 1.0000
18, "units.us(Trait);us(Trait)_14", G, P, 35 , 18, 1.0000

```

19, "units.us(Trait); us(Trait)_15", G, P, 70 , 19, 1.0000
Sometimes users wish to rerun a job making changes to the final values, parametric constraints and relationships (equality and scale) between parameters. A file .msv is produced, similar to .tsv but containing final values that can be edited and used with !MSV. If !TSV (or \(!\mathrm{MSV}\) ) is specified ASReml will read the current (created with the same PART number) .tsv (or .msv) file. If there is no current .tsv (or .msv file), a non-current (produced from a different PART of the same job) .tsv (or .msv) file will be read.

Alternative ways of specifying !TSV and !MSV are !CONTINUE 2 and !CONTINUE 3 and these qualifiers can be used as options on the command line as -C 2 and -C 3 . Note that the constraints in the .tsv/.msv files take precedence over those in the .as file.

\subsection*{7.9.2 Using estimates from simpler models}

Sometimes we have estimates from simpler models and we wish to reduce the need for the user to type in updated starting values. The ! CONTINUE command line qualifier instructs ASReml to update initial parameter values from a .rsv file. When it is specified, ASReml first looks for a current .rsv file, and if found will read it and report the constructed initial values in the .tsv file. If there is no current .rsv file, it looks for the most recent noncurrent .rsv file and uses that to construct initial values. As discussed below, 'current' means having the same 'basename' and 'run number'. A non-current file will have the same 'basename' but a different 'run number'. When reading the .rsv file, if the variance structure for a term has changed, ASReml will take results from some structures as supplying starting values for other structures. The transitions recognised are

CORUH to FA1 and XFA1
CORGH to US
DIAG to CORUH
DIAG to FA1
DIAG to XFA1
FA \(i\) to CORGH
FA \(i\) to \(\mathrm{FA} i+1\)
FA \(i\) to US
XFA \(i\) to XFA \(i+1\)
XFA \(i\) to US
US to XFA1, XFA2, XFA3

Users may wish to keep output from a series of runs. This can be done by using !RENAME 1 ! ARG runnumber on the first line of the command file or alternatively -R1 basename runnumber on the command line. This ensures that the output from the various parts has runnumber appended to the base filename. If an .rsv file does not exist for the particular runnumber you are running, ASReml will retrieve starting values from the most recent .rsv file formed by that job. You can, of course, copy an .rsv file building the new runnumber into its name so that ASReml uses that particular set of values. The .asr file keeps track of which .rsv files have been formed. If the user wishes to use different models with different runs then using !DOPART \(\$ 1\) and specifying the different models in different parts will achieve this aim.

\subsection*{7.10 Default variance structures in ASReml}

There are default variance structures in ASReml that allow the linear mixed model to be specified more succinctly. IDV is the default variance structure for random model terms and for the residual error terms. For example
- A will be interpreted as idv(A)
- A.B will be interpreted as idv(A.B)
- A.B.C will be interpreted as idv(A.B.C)
- sat(Expt,1).A will be interpreted as sat(Expt,1).idv(A)
- sat(Expt,1).A.B will be interpreted as sat(Expt,1).idv(A.B)
- sat(Expt,1).A.B.C will be interpreted as sat(Expt,1).idv(A.B.C)

In these cases the model term can be followed by an initial value and/or a parametric qualifier, for example
- A 1 ! GP is interpreted as idv(A ! INIT 1 ! GP)

There is always a residual error term in the model but if it is not explicitly specified it is assumed to be idv(units) for univariate data and id(units).us(Trait) for multivariate data. If the consolidated model term definition is incomplete, that is, if some but not all of the components have a variance model function specified, the variance model functions \(i d v()\) or id() will be applied to these components depending on the variance model functions specified. For example
- idv(A).B will be interpreted as idv(A).id(B)
- id(A). B will be interpreted as id(A).idv(B
- id(A).B.C will be interpreted as id(A).idv(B.C)
- idv(A).B.C will be interpreted as idv(A).id(B.C)

Similarly, at the residual level as sat() cannot be converted into a variance function
- sat(Expt,1).id(A).B will be interpreted as sat(Expt,1).id(A).idv(B)
- sat(Expt,1).id(A).B.C will be interpreted as sat(Expt,1).id(A).idv(B.C)
- sat(Expt,1).idv(A).B.C will be interpreted as sat(Expt,1).idv(A).id(B.C)

\subsection*{7.11 Variance model functions available in ASReml}

However, it is good practice to specify variance model functions for the components in model terms and we encourage the user to do this. ASReml will automatically add a common variance to consolidated model terms that are specified as correlation models for both R and G structures, for example,
- id(A) will be converted to idv(A)
- sat(Expt,1).id(units) will be converted to sat(Expt,1).idv(units)
- id(A).ar1(B) will be converted to idv(A).ar1(B)
\(-\operatorname{ar1}(A) \cdot \operatorname{ar1}(B)\) will be converted to \(\operatorname{ar1v(A)} \cdot \operatorname{ar1(B)}\)
- sat(Expt,1).id(A).ar1(B) will be converted to sat(Expt,1).idv(A).ar1(B)
- sat(Expt,1) \(\cdot \operatorname{ar1}(A) \cdot \operatorname{ar1}(B)\) will be converted to sat (Expt,1)\(\cdot \operatorname{ar1v}(A) \cdot \operatorname{ar} 1(B)\)

Using NIN example 2 for demonstration (Section 7.5), a more succinct coding of the model definition would be
```

yield ~ mu variety !r repl
residual units

```
which would result in identical output to the original example. The model could be relaxed further to
```

yield ~ mu variety !r repl

```

\subsection*{7.11 Variance model functions available in ASReml}

The full range of variance models, that is, correlation, homogeneous variance and heterogeneous variance models available in ASReml is presented in Table 7.6 which is located at the end of this chapter for easy access, see Section 7.12 on page 147. This presents the variance structure name (in UPPERCASE), the corresponding variance model function name (in lowercase) used to associate the variance structure with the appropriate component of a model term, a brief description, the algebraic form of the model and the number of associated variance structure parameters.

The models span correlation (base) models (diagonal elements equal to 1 and correlations on the off diagonals), the extension of these to variance models (variances on the diagonals and covariance on the off diagonals), additional models that are parameterized as variance matrices rather than as correlation matrices and some special cases where the covariance structure is known except for the scale.

See Sections 7.2 and 7.10 for important points to note in defining variance structures in ASReml.

\subsection*{7.11 Variance model functions available in ASReml}

\subsection*{7.11.1 Forming variance models from correlation models}

The variance function models presented under correlation models in Table 7.6 (id ...mat \(k\) ) are used to specify the correlation models for the corresponding variance structures. The corresponding homogeneous and heterogeneous variance models are specified by appending v and h to the variance model function names respectively, and appending the corresponding variance parameters to the corresponding list of parameters. This convention holds for most models. It does not make sense to append \(v\) or \(h\) to the variance model function names for the heterogeneous variance models from diag ...xfak.

In summary:
- to specify a correlation model, provide the variance model function name given in Table 7.6, for example, for a factor row
```

exp(row)

```
is an exponential correlation model with a single correlation parameter,
- to specify an homogeneous variance model, append a v to the variance model function name, for example
```

expv(row)

```
is an exponential variance model with 2 parameters (correlation and variance),
- to specify a heterogeneous variance model, append an h to the variance model function name, for example
```

coruh(site)

```
is a variance matrix with different variances for each site but the same correlation for all pairs of sites.

Important See Section 7.4 for rules on combining variance models and Section 7.7.5 for important notes regarding initial values.

\subsection*{7.11.2 Non singular variance matrices}

For REML estimation, ASReml needs to invert each variance matrix. For this it requires that the matrices be negative definite or positive definite. They must not be singular. Negative definite matrices will have negative elements on the diagonal of the matrix and/or its inverse. There are two exceptions: the XFA model which has been specifically designed to fit singular matrices (Thompson et al. 2003, page 144), and singular relationship matrices described in Chapter 9.

If an estimated matrix comes too close to being singular, ASReml will stop iterating.
Let \(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\) represent an arbitrary quadratic form for \(\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}\). The quadratic form

\subsection*{7.11 Variance model functions available in ASReml}
is said to be nonnegative definite if \(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \geq \mathbf{0}\) for all \(\boldsymbol{x} \in \boldsymbol{R}^{n}\). If \(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\) is nonnegative definite and in addition the null vector \(\mathbf{0}\) is the only value of \(\boldsymbol{x}\) for which \(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\), then the quadratic form is said to be positive definite. Hence the matrix \(\boldsymbol{A}\) is said to be positive definite if \(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\) is positive definite, see Harville (1997), pp 211.

\subsection*{7.11.3 Notes on the variance models}

These notes provide additional information on the variance models defined in Table 7.6.
- the IDH and DIAG models fit the same diagonal variance structure,
- the CORGH and US are equivalent variance structures parameterised differently. Both may fail to converge if the starting values are not good and/or if the maximum REML likelihood occurs at parameter values outside the parameter space. The us model is likely to be better when the matrix is of order 3 or higher.
- in CHOL \(k\) models \(\boldsymbol{\Sigma}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{\boldsymbol{\top}}\) where \(\boldsymbol{L}\) is lower triangular with ones on the diagonal, \(\boldsymbol{D}\) is diagonal and \(k\) is the number of non-zero off diagonals in \(\boldsymbol{L}\),
- in CHOL \(k\) C models \(\boldsymbol{\Sigma}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{\top}\) where \(\boldsymbol{L}\) is lower triangular with ones on the diagonal, \(\boldsymbol{D}\) is diagonal and \(k\) is the number of non-zero sub diagonal columns in \(\boldsymbol{L}\). This is somewhat similar to the factor analytic model.
- in ANTE \(k\) models \(\boldsymbol{\Sigma}^{-1}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\top}\) where \(\boldsymbol{U}\) is upper triangular with ones on the diagonal, \(\boldsymbol{D}\) is diagonal and \(k\) is the number of non-zero off diagonals in \(\boldsymbol{U}\),
- the CHOL \(k\) and ANTE \(k\) models are equivalent to the US structure, that is, the full variance structure, when \(k\) is \(\omega-1\),
- initial values for US, CHOL and ANTE structures are given in the form of a US matrix which is specified lower triangle row-wise, viz
\[
\left[\begin{array}{lll}
\sigma_{11} & & \\
\sigma_{21} & \sigma_{22} & \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right],
\]
that is, initial values are given in the order, \(1=\sigma_{11}, 2=\sigma_{21}, 3=\sigma_{22}, \ldots\)
- the US model is associated with several special features of ASReml. There is an process to update its values by EM (see !EMFLAG rather than AI when its AI updates make the matrix non positive definite. Also, when used in the \(\boldsymbol{R}\) structure for multivariate data, ASReml automatically recognises patterns of missing values in the responses (see Chapter 8).

\subsection*{7.11.4 Notes on Matérn}

The Matérn class of isotropic covariance models is now described. ASReml uses an extended Matérn class which accomodates geometric anisotropy and a choice of metrics for random fields observed in two dimensions. This extension, described in detail in Haskard (2006), is

\subsection*{7.11 Variance model functions available in ASReml}
given by
\[
\rho(\boldsymbol{h} ; \boldsymbol{\phi})=\rho_{M}(d(\boldsymbol{h} ; \delta, \alpha, \lambda) ; \phi, \nu)
\]
where \(\boldsymbol{h}=\left(h_{x}, h_{y}\right)^{T}\) is the spatial separation vector, \((\delta, \alpha)\) governs geometric anisotropy, \((\lambda)\) specifies the choice of metric and \((\phi, \nu)\) are the parameters of the Matérn correlation function. The function is
\[
\begin{equation*}
\rho_{M}(d ; \phi, \nu)=\left\{2^{\nu-1} \Gamma(\nu)\right\}^{-1}\left(\frac{d}{\phi}\right)^{\nu} K_{\nu}\left(\frac{d}{\phi}\right), \tag{7.1}
\end{equation*}
\]
where \(\phi>0\) is a range parameter, \(\nu>0\) is a smoothness parameter, \(\Gamma(\cdot)\) is the gamma function, \(K_{\nu}(\).) is the modified Bessel function of the third kind of order \(\nu\) (Abramowitz and Stegun, 1965, section 9.6) and \(d\) is the distance defined in terms of \(X\) and \(Y\) axes: \(h_{x}=x_{i}-x_{j}\); \(h_{y}=y_{i}-y_{j} ; s_{x}=\cos (\alpha) h_{x}+\sin (\alpha) h_{y} ; s_{y}=\sin (\alpha) h_{x}-\cos (\alpha) h_{y} ; d=\left(\delta\left|s_{x}\right|^{\lambda}+\left|s_{y}\right|^{\lambda} / \delta\right)^{1 / \lambda}\).

For a given \(\nu\), the range parameter \(\phi\) affects the rate of decay of \(\rho(\cdot)\) with increasing \(d\). The parameter \(\nu>0\) controls the analytic smoothness of the underlying process \(\boldsymbol{u}_{s}\), the process being \(\lceil\nu\rceil-1\) times mean-square differentiable, where \(\lceil\nu\rceil\) is the smallest integer greater than or equal to \(\nu\) (Stein, 1999, page 31). Larger \(\nu\) correspond to smoother processes. ASReml uses numerical derivatives for \(\nu\) when its current value is outside the interval [0.2,5].

When \(\nu=m+\frac{1}{2}\) with \(m\) a non-negative integer, \(\rho_{M}(\cdot)\) is the product of \(\exp (-d / \phi)\) and a polynomial of degree \(m\) in \(d\). Thus \(\nu=\frac{1}{2}\) yields the exponential correlation function, \(\rho_{M}\left(d ; \phi, \frac{1}{2}\right)=\exp (-d / \phi)\), and \(\nu=1\) yields Whittle's elementary correlation function, \(\rho_{M}(d ; \phi, 1)=(d / \phi) K_{1}(d / \phi)\) (Webster and Oliver, 2001).

When \(\nu=1.5\) then
\[
\rho_{M}(d ; \phi, 1.5)=\exp (-d / \phi)(1+d / \phi)
\]
which is the correlation function of a random field which is continuous and once differentiable. This has been used recently by Kammann and Wand (2003). As \(\nu \rightarrow \infty\) then \(\rho_{M}(\cdot)\) tends to the gaussian correlation function.

The final metric parameter \(\lambda\) is not estimated by ASReml; it has default value of 2 for Euclidean distance. Setting \(\lambda=1\) provides the cityblock metric, which together with \(\nu=0.5\) models a separable AR1 \(\times\) AR1 process. Cityblock metric may be appropriate when the dominant spatial processes are aligned with rows/columns as occurs in field experiments. Geometric anisotropy is discussed in most geostatistical books (Webster and Oliver, 2001, Diggle et al., 2003) but rarely are the anisotropy angle or ratio estimated from the data. Similarly the smoothness parameter \(\nu\) is often set a-priori (Kammann and Wand, 2003, Diggle et al., 2003). However Stein (1999) and Haskard (2006) demonstrate that \(\nu\) can be reliably estimated even for modest sized data-sets, subject to caveats regarding the sampling design.

The syntax for the Matérn class in ASReml is given by MAT \(k\) where \(k\) is the number of parameters to be specified; the remaining parameters take their default values. Use the !G qualifier to control whether a specified parameter is estimated or fixed. The order of the parameters in ASReml, with their defaults, is \((\phi, \nu=0.5, \delta=1, \alpha=0, \lambda=2)\). For

\subsection*{7.11 Variance model functions available in ASReml}
example, if we wish to fit a Matérn model with only \(\phi\) estimated and the other parameters set at their defaults then we use MAT1. MAT2 allows \(\nu\) to be estimated or fixed at some other value (for example
mat2(fac(xcoord,ycoord) !INIT 0.21 .0 ! GPF ) ).
The parameters \(\phi\) and \(\nu\) are highly correlated so it may be better to manually cover a grid of \(\nu\) values.

We note that there is non-uniqueness in the anisotropy parameters of this metric \(d(\cdot)\) since inverting \(\delta\) and adding \(\frac{\pi}{2}\) to \(\alpha\) gives the same distance. This non-uniqueness can be removed by considering \(0 \leq \alpha<\frac{\pi}{2}\) and \(\delta>0\), or by considering \(0 \leq \alpha<\pi\) and either \(0<\delta \leq 1\) or \(\delta \geq 1\). With \(\lambda=2\), isotropy occurs when \(\delta=1\), and then the rotation angle \(\alpha\) is irrelevant: correlation contours are circles, compared with ellipses in general. With \(\lambda=1\), correlation contours are diamonds.

\subsection*{7.11.5 Notes on power models}

Power models rely on the definition of distance for the associated term, for example,
- the distance between time points in a one-dimensional longitudinal analysis,
- the spatial distance between plot coordinates in a two-dimensional field trial analysis.

Information for determining distances is supplied either implicitly by applying the model to the fac() of the coordinate variables, or explicitly with the !COORD qualifier.
- For one dimensional cases, either
* \(\operatorname{expv}(f a c(X))\) where \(X\) contains the positions,
* \(\operatorname{expv}(\) Trait !COORD x ) where \(x\) is a vector of positions.
- In two directions (IEXP, IGAU, IEUC, AEXP, AGAU, MATn)
* For a \(\boldsymbol{G}\) structure relating to the model term \(\operatorname{fac}(x, y)\), use fac \((x, y)\). For example !
```

yield ~ mu ...!r ieucv(fac(xcoord,ycoord !INIT 0.7 1.3)

```

\subsection*{7.11.6 Notes on Factor Analytic models}

FA \(k\), FACV \(k\) and XFA \(k\) are different parameterizations of the factor analytic model in which \(\boldsymbol{\Sigma}\) is modelled as \(\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\boldsymbol{\top}}+\boldsymbol{\Psi}\) where \(\boldsymbol{\Gamma}^{(\omega \times k)}\) is a matrix of loadings on the covariance scale and \(\boldsymbol{\Psi}\) is a diagonal vector of specific variances. See Smith et al. (2001) and Thompson et al. (2003) for examples of factor analytic models in multi-environment trials. The general limitations are
- that \(\boldsymbol{\Psi}\) may not include zeros except in the XFAk formulation
- constraints are required in \(\Gamma\) for \(k>1\) for identifiability. These are automatically set unless the user formally constrains one parameter in the second column, two in the third

\subsection*{7.11 Variance model functions available in ASReml}
column, etc.
- the total number of estimated parameters \((k \omega+\omega-k(k-1) / 2)\) may not exceed \(\omega(\omega+1) / 2\).

In FA \(k\) models the variance-covariance matrix \(\boldsymbol{\Sigma}^{(\omega \times \omega)}\) is modelled on the correlation scale as \(\boldsymbol{\Sigma}=\boldsymbol{D C D}\), where
- \(\boldsymbol{D}^{(\omega \times \omega)}\) is diagonal such that \(\boldsymbol{D} \boldsymbol{D}=\operatorname{diag}(\boldsymbol{\Sigma})\),
- \(\boldsymbol{C}^{(\omega \times \omega)}\) is a correlation matrix of the form \(\boldsymbol{F} \boldsymbol{F}^{\boldsymbol{\top}}+\boldsymbol{E}\) where \(\boldsymbol{F}^{(\omega \times k)}\) is a matrix of loadings on the correlation scale and \(\boldsymbol{E}\) is diagonal and is defined by difference,
- the parameters are specified in the order loadings for each factor \((\boldsymbol{F})\) followed by the variances \((\operatorname{diag}(\boldsymbol{\Sigma}))\); when \(k\) is greater than 1 , constraints on the elements of \(\boldsymbol{F}\) are required, see Table 7.5,

FACV \(k\) models (CV for covariance) are an alternative formulation of FA models in which \(\boldsymbol{\Sigma}\) is modelled as \(\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\boldsymbol{\top}}+\boldsymbol{\Psi}\) where \(\boldsymbol{\Gamma}^{(\omega \times k)}\) is a matrix of loadings on the covariance scale and \(\Psi\) is diagonal. The parameters in FACV
- are specified in the order loadings \((\boldsymbol{\Gamma})\) followed by variances \((\boldsymbol{\Psi})\); when \(k\) is greater than 1 , constraints on the elements of \(\boldsymbol{\Gamma}\) are required, see Table 7.5,
- are related to those in FA by \(\boldsymbol{\Gamma}=\boldsymbol{D F}\) and \(\boldsymbol{\Psi}=\boldsymbol{D} \boldsymbol{E} \boldsymbol{D}\),
\(\mathrm{XFA} k\) ( X for extended) is the third form of the factor analytic model and has the same parameterisation as for FACV, that is, \(\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\boldsymbol{\top}}+\boldsymbol{\Psi}\). However, XFA models
- have parameters specified in the order \(\operatorname{diag}(\boldsymbol{\Psi})\) and \(\operatorname{vec}(\boldsymbol{\Gamma})\); when \(k\) is greater than 1 , constraints on the elements of \(\boldsymbol{\Gamma}\) are required, see Table 7.5,
- may not be used in \(\boldsymbol{R}\) structures,
- return the factors as well as the effects.
- permit some elements of \(\boldsymbol{\Psi}\) to be fixed to zero,
- are computationally faster than the FACV formulation for large problems when \(k\) is much smaller than \(\omega\),

With multiple factors, some constraints are required to maintain identifiablity. Traditionally, this has simply been to set the leading loadings of new factors to zero. Loadings then need to be rotated to orthogonality. If no loadings are constrained, ASReml will rotate the loadings to orthogonality, after holding the loadings of lower factors fixed for a few iterations. The orthogonalization process occurs at the beginning of the iteration (so the final returned values have not been formally rotated).

\subsection*{7.11 Variance model functions available in ASReml}

Finding the REML solutions for multifactor Factor Analytic models can be difficult. The first problem is specifying initial values. When using ! CONTINUE and progressing XFA \((k)\) to XFA \((k+1)\), ASReml 3 initialises the factor \(k+1\) at \(\sqrt{ }(\Psi * 0.2)\), changing the sign of the (relatively) largest loading to negative. One strategy which sometimes works in this context is to hold the previously estimated factor loadings fixed for a few iterations so that the factor \(k+1\) initally aims to explain variation previously incorporated in \(\boldsymbol{\psi}\). Then allow all loadings to be updated in the remaining rounds. A second problem, at present unresolved but somewhat improved, is that sometimes the LogL rises to a relatively high value and then drifts away.

In an attempt to make the process easier, these two processes have been linked as an additional meaning for the ! AILOADING \(n\) qualifier. When fitting \(k\) factors with \(N>k\), the first \(k-1\) loadings are held fixed (no rotation) for the first \(k\) iterations. Then for iterations \(k+1\) to \(n\), loadings vectors are updated in pairs, and rotated. If !AILOADING is not set by the user and the model is an upgrade from a lower order XFA, !AILOADING is set to 4 .

The problem of XFA loadings going off-scale has been reduced by adding a variable penalty the the loading part of the AI matrix.

It is not unusual for users to have trouble comprehending and fitting extended factor analytic models, especially with more than two factors. Two examples are developed in a separate document available on request.

\subsection*{7.12 Variance models available in ASReml}

Table 7.6: Details of the variance models available in ASReml
\begin{tabular}{lll}
\hline variance & description & \begin{tabular}{l} 
algebraic \\
form
\end{tabular} \\
structure & & number of parameters \({ }^{\dagger}\) \\
name & & \\
variance & & corr \\
model & hom & variance \\
function & & \\
name & &
\end{tabular}

\section*{correlation models}

\section*{One-dimensional, equally spaced}

ID
identity
AR1
ar1
\[
\begin{array}{ll}
1^{s t} \text { order } & C_{i i}=1, C_{i+1, i}=\phi_{1} \\
\text { autoregressive } & C_{i j}=\phi_{1} C_{i-1, j}, i>j+1 \\
& \left|\phi_{1}\right|<1
\end{array}
\]

AR2
ar2
\[
\begin{array}{ll}
2^{n d} \text { order } & C_{i i}=1, \\
\text { autoregressive } & C_{i+1, i}=\phi_{1} /\left(1-\phi_{2}\right) \\
& C_{i j}=\phi_{1} C_{i-1, j}+\phi_{2} C_{i-2, j}, i> \\
& j+1 \\
& \left|\phi_{1}\right|<\left(1-\phi_{2}\right),\left|\phi_{2}\right|<1
\end{array}
\]

AR3
ar3
\[
\begin{aligned}
& 3^{\text {rd }} \text { order } \\
& \text { autoregressive }
\end{aligned}
\]
\(C_{i i}=1, \Omega=1-\phi_{2}-\phi_{3}\left(\phi_{1}+\phi_{3}\right), \quad 3 \quad 4 \quad 3+\omega\)
\(C_{i+1, i}=\left(\phi_{1}+\phi_{2} \phi_{3}\right) / \Omega\),
\(C_{i+2, i}=\left(\phi_{1}\left(\phi_{1}+\phi_{3}\right)+\phi_{2}\left(1-\phi_{2}\right)\right) / \Omega\),
\(C_{i j}=\phi_{1} C_{i-1, j}+\phi_{2} C_{i-2, j}+\phi_{3} C_{i-3, j}, i>j+2\)
\(\left|\phi_{1}\right|<\left(1-\phi_{2}\right),\left|\phi_{2}\right|<1,\left|\phi_{3}\right|<1\)
SAR
symmetric
autoregressive
\(C_{i i}=1\),
1
2
\(1+\omega\)
\(C_{i+1, i}=\phi_{1} /\left(1+\phi_{1}^{2} / 4\right)\)
\(C_{i j}=\phi_{1} C_{i-1, j}-\phi_{1}^{2} / 4 C_{i-2, j}\),
\[
i>j+1
\]
\(\left|\phi_{1}\right|<1\)
SAR2
sar2
\begin{tabular}{ll} 
constrained & as for AR3 using \\
autoregressive & \(\phi_{1}=\gamma_{1}+2 \gamma_{2}\), \\
3 & \(\phi_{2}=-\gamma_{2}\left(2 \gamma_{1}+\gamma_{2}\right)\), \\
used for & \(\phi_{3}=\gamma_{1} \gamma_{2}^{2}\),
\end{tabular}

Details of the variance models available in ASReml
\begin{tabular}{llll}
\hline variance & description & algebraic & \\
structure & form & number of parameters \({ }^{\dagger}\) \\
name & & \\
variance & & corr & \\
\begin{tabular}{l} 
model \\
function \\
name
\end{tabular} & & variance \(\quad\) het \\
\hline
\end{tabular}

MA1 ma1
\begin{tabular}{ll}
\(1^{\text {st }}\) order & \(C_{i i}=1\), \\
moving aver- & \(C_{i+1, i}=-\theta_{1} /\left(1+\theta_{1}^{2}\right)\) \\
age & \(C_{j i}=0, j>i+2\) \\
& \(\left|\theta_{1}\right|<1\)
\end{tabular}

MA2
ma2
moving average
\(C_{i i}=1\),
2
3
\(2+\omega\)
\(C_{i+1, i}=-\theta_{1}\left(1-\theta_{2}\right) /\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)\)
\(C_{i+2, i}=-\theta_{2} /\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)\)
\(C_{j i}=0, j>i+2\)
\(\theta_{2} \pm \theta_{1}<1\)
\(\left|\theta_{1}\right|<1,\left|\theta_{2}\right|<1\)
ARMA
arma
autoregressive \(\quad C_{i i}=1\),
moving aver-
\(C_{i+1, i}=(\theta-\phi)(1-\theta \phi) /(1+\)
\(\theta^{2}-2 \theta \phi\) )
\(C_{j i}=\phi C_{j-1, i}, j>i+1\)
\(|\theta|<1,|\phi|<1\)
CORU
coru
uniform correlation
\[
C_{i i}=1, C_{i j}=\phi, i \neq j
\]
\(1 \quad 2\)
\(1+\omega\)

CORB
corb
banded
correlation
\(C_{i i}=1\)
\(C_{i+j, i}=\phi_{j}, 1 \leq j \leq \omega-1\)
\(\left|\phi_{j}\right|<1\)
CORG
corg
\[
\begin{array}{lll}
\frac{\omega(\omega-1)}{2} & \frac{\omega(\omega-1)}{2}+1 & \frac{\omega(\omega-1)}{2} \\
& +\omega
\end{array}
\]
\[
\begin{array}{ll}
\text { general } & C_{i i}=1 \\
\text { correlation } & C_{i j}=\phi_{i j}, i \neq j \\
\text { CORGH }=\text { US } & \left|\phi_{i j}\right|<1
\end{array}
\]

Details of the variance models available in ASReml
\begin{tabular}{lll}
\hline & & \\
\begin{tabular}{l} 
variance \\
structure \\
name
\end{tabular} & \begin{tabular}{l} 
algebraic \\
form
\end{tabular} & number of parameters \({ }^{\dagger}\) \\
variance & & \\
model & & corr \\
function & & hom \\
name & & \\
\hline
\end{tabular}

\section*{One-dimensional unequally spaced}

EXP
exp

> exponential
\(C_{i i}=1\)
1
2
\(1+\omega\)
\(C_{i j}=\phi^{\left|x_{i}-x_{j}\right|}, i \neq j\)
\(x_{i}\) are coordinates
\(0<\phi<1\)
GAU
gau
gaussian
\(C_{i i}=1\)
1
2
\(1+\omega\)
\(C_{i j}=\phi^{\left(x_{i}-x_{j}\right)^{2}}, i \neq j\)
\(x_{i}\) are coordinates
\(0<\phi<1\)

\section*{Two-dimensional irregularly spaced}
\(\boldsymbol{x}\) and \(\boldsymbol{y}\) vectors of coordinates
\(\theta_{i j}=\min \left(d_{i j} / \phi_{1}, 1\right)\)
\(d_{i j}\) is euclidean distance
IEXP
iexp
isotropic
\(C_{i i}=1\)
\(C_{i j}=\phi^{\left|x_{i}-x_{j}\right|+\left|y_{i}-y_{j}\right|}, i \neq j\)
\(0<\phi<1\)
IGAU
igau

\section*{isotropic}
\(C_{i i}=1\)
1
2
\(1+\omega\)
gaussian
\(C_{i j}=\phi^{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}, i \neq j\)
\(0<\phi<1\)
IEUC
ieuc

> isotropic
> euclidean
\(C_{i i}=1\)
1
2
\(1+\omega\)
\(C_{i j}=\phi^{\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}}, i \neq j\)
\(0<\phi<1\)
LVR
lvr
linear variance
\[
C_{i j}=\left(1-\theta_{i j}\right)
\]

1
2
\(1+\omega\) \(0<\phi_{1}\)

Details of the variance models available in ASReml
\begin{tabular}{lllll}
\hline \begin{tabular}{l} 
variance \\
structure \\
name
\end{tabular} & description & \begin{tabular}{l} 
algebraic \\
form
\end{tabular} & & number of parameters \({ }^{\dagger}\) \\
\begin{tabular}{l} 
variance \\
model \\
function \\
name
\end{tabular} & & & & \\
\hline
\end{tabular}

\section*{heterogeneous variance models}

DIAG
\begin{tabular}{|c|c|c|c|c|c|}
\hline diag & \[
\begin{aligned}
& \text { diagonal = IDH } \\
& \text { idh }
\end{aligned}
\] & \(\boldsymbol{\Sigma}_{i i}=\phi_{i} \boldsymbol{\Sigma}_{i j}=0, i \neq j\) & - & - & \(\omega\) \\
\hline US
us & unstructured general covariance matrix & \(\boldsymbol{\Sigma}_{i j}=\phi_{i j}\) & - & - & \(\frac{\omega(\omega+1)}{2}\) \\
\hline OWN \(k\) ownk & user explicitly forms \(\boldsymbol{V}\) and \(\partial \boldsymbol{V}\) & & - & - & \(k\) \\
\hline
\end{tabular}

Details of the variance models available in ASReml
\begin{tabular}{|c|c|c|c|c|c|}
\hline variance & description & algebraic & \multicolumn{3}{|r|}{number of parameters \({ }^{\dagger}\)} \\
\hline \begin{tabular}{l}
variance \\
model \\
function \\
name
\end{tabular} & & & corr & hom variance & het variance \\
\hline \begin{tabular}{l}
ANTE1 \\
ante1 \\
ANTE \(k\) \\
ante \(k\)
\end{tabular} & \[
\begin{array}{ll}
1^{\text {st }} \quad k \quad \text { order } \\
k^{\text {th }} & \begin{array}{l}
\text { antede- }
\end{array} \\
& \text { pendence } \\
1 \leq k \leq \omega-1
\end{array}
\] & \[
\begin{aligned}
& \boldsymbol{\Sigma}^{-1}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\boldsymbol{\top}} \\
& D_{i i}=d_{i}, D_{i j}=0, i \neq j \\
& U_{i i}=1, U_{i j}=u_{i j}, 1 \leq j-i \leq k \\
& \boldsymbol{U}_{i j}=0, i>j
\end{aligned}
\] & - & - & \(\frac{\omega(\omega+1)}{2}\) \\
\hline \begin{tabular}{l}
CHOL1 \\
chol1 \\
CHOL \(k\) \\
cholk
\end{tabular} & \(\begin{array}{ll}1^{\text {st }} & k \quad \text { order } \\ k^{\text {th }} & \text { cholesky }\end{array}\)
\[
1 \leq k \leq \omega-1
\] & \[
\begin{aligned}
& \boldsymbol{\Sigma}=L \boldsymbol{D} L^{\top} \\
& D_{i i}=d_{i}, D_{i j}=0, i \neq j \\
& L_{i i}=1, L_{i j}=l_{i j}, 1 \leq i-j \leq k
\end{aligned}
\] & - & - & \(\frac{\omega(\omega+1)}{2}\) \\
\hline \begin{tabular}{l}
FA1 \\
fa1 \\
FA \(k\) \\
fak
\end{tabular} & \[
\begin{array}{ll}
1^{\text {st }} & k \text { order } \\
k^{\text {th }} & \text { factor } \\
& \text { analytic }
\end{array}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& \boldsymbol{\Sigma}=\boldsymbol{D} \boldsymbol{C} \boldsymbol{D}, \\
& \boldsymbol{C}=\boldsymbol{F} \boldsymbol{F}^{\boldsymbol{\top}}+\boldsymbol{E},
\end{aligned}
\] \\
\(\boldsymbol{F}\) contains \(k\) correlation factors \\
\(\boldsymbol{E}\) diagonal
\[
\boldsymbol{D} \boldsymbol{D}=\operatorname{diag}(\boldsymbol{\Sigma})
\]
\end{tabular} & - & - & \[
\begin{array}{r}
\omega+\omega \\
k \omega+\omega
\end{array}
\] \\
\hline \begin{tabular}{l}
FACV[1] \\
facv1 \\
FACVk \\
facv \(k\)
\end{tabular} & \[
\begin{array}{ll}
1^{\text {st }} & k \quad \text { order } \\
k^{\text {th }} & \text { factor } \\
& \text { analytic } \\
& \text { covari- } \\
& \text { ance } \\
& \text { form }
\end{array}
\] & \begin{tabular}{l}
\[
\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\top}+\boldsymbol{\Psi}
\] \\
\(\boldsymbol{\Gamma}\) contains covariance factors \(\boldsymbol{\Psi}\) contains specific variance
\end{tabular} & - & - & \[
\begin{array}{r}
\omega+\omega \\
k \omega+\omega
\end{array}
\] \\
\hline \begin{tabular}{l}
XFA1 \\
xfa1 \\
XFAk \\
xfak
\end{tabular} & \[
\begin{array}{ll}
1^{\text {st }} & k \quad \text { order } \\
k^{\text {th }} & \text { extended } \\
& \text { factor } \\
& \text { analytic }
\end{array}
\] & \begin{tabular}{l}
\[
\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\top}+\boldsymbol{\Psi}
\] \\
\(\boldsymbol{\Gamma}\) contains covariance factors \\
\(\boldsymbol{\Psi}\) contains specific variance
\end{tabular} & - & - & \[
\begin{gathered}
\omega+\omega \\
k \omega+\omega
\end{gathered}
\] \\
\hline
\end{tabular}

\subsection*{7.12 Variance models available in ASReml}

Details of the variance models available in ASReml
\begin{tabular}{llr}
\hline variance & description & \begin{tabular}{l} 
algebraic \\
form
\end{tabular} \\
\begin{tabular}{l} 
fructure \\
name
\end{tabular} & number of parameters \({ }^{\dagger}\) \\
variance & & \\
model & corr & \\
function & & hom \\
name & & \\
\hline
\end{tabular}

\section*{relationship matrices \({ }^{\ddagger}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline AINV & inverse relationship matrix derived from pedigree & 0 & 1 & - \\
\hline \begin{tabular}{l}
NRM \\
nrm
\end{tabular} & relationship matrix derived from pedigree & 0 & 1 & - \\
\hline \begin{tabular}{l}
GIV1 \\
giv1
\end{tabular} & generalized inverse number 1 & 0 & 1 & - \\
\hline \(\vdots\) & \(\vdots \quad \vdots\) & \(\vdots\) & \(\vdots\) & \\
\hline \begin{tabular}{l}
GIV8 \\
giv8
\end{tabular} & generalized inverse matrix 8 & 0 & 1 & - \\
\hline \begin{tabular}{l}
GRM1 \\
grm1
\end{tabular} & generalized relationship number 1 & 0 & 1 & - \\
\hline ; & : & \(\vdots\) & \(\vdots\) & \\
\hline \begin{tabular}{l}
GRM8 \\
grm8
\end{tabular} & generalized relationship matrix 8 & 0 & 1 & - \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) This is the number of variance structure parameters, \(\omega\) is the dimension of the matrix. The homogeneous variance form is specified by appending \(V\) to the correlation basename; the heterogeneous variance form is specified by appending \(H\) to the correlation basename
\(\ddagger\) These will be associated with 1 variance parameter unless used in direct product with another structure that provides the variance. Appending a v to a name makes it explicit that a variance parameter is fitted.
}

\section*{8 Command file: Multivariate analysis}

\subsection*{8.1 Introduction}

Multivariate analysis is used here in the narrow sense of a multivariate mixed model. There are many other multivariate analysis techniques which are not covered by ASReml. Multivariate analysis is used when we are interested in estimating the correlations between distinct traits (for example, fleece weight and fibre diameter in sheep) and for repeated measures of a single trait.

\subsection*{8.1.1 Repeated measures on rats}

Wolfinger (1996) summarises a range of variance structures that can be fitted to repeated measures data and demonstrates the models using five weights taken weekly on 27 rats subjected to 3 treatments. This command file demonstrates a multivariate analysis of the five repeated measures.
```

Wolfinger rat data
treat !A
wt0 wt1 wt2 wt3 wt4
rat.dat
wt0 wt1 wt2 wt3 wt4 ~ Trait,
treat Trait.treat
residual id(units).us(Trait !GP)

```

Note that the two dimensional structure for residual errors meets the requirement of independent units and corresponds to the data being ordered traits within units.

\subsection*{8.2 Model specification}

\subsection*{8.1.2 Wether trial data}

Three key traits for the Australian wool industry are the weight of wool grown per year, the cleanness and the diameter of that wool. Much of the wool is produced from wethers and most major producers have traditionally used a particular strain or bloodline. To assess the importance of bloodline differences, many wether trials were conducted. One trial, conducted from 1984 to 1988 at Borenore near Orange, in-
```

Orange Wether Trial 1984-8
SheepID !I
TRIAL
BloodLine !I
TEAM * YEAR *
GFW YLD FDIAM
wether.dat !skip 1
GFW FDIAM ~ Trait Trait.YEAR,
!r us(Trait).id(TEAM) us(Trait).id(SheepID)
residual id(units).us(Trait !GP)
predict YEAR Trait

``` volved 35 teams of wethers representing 27 bloodlines. The file wether. dat shown below contains greasy fleece weight (kg), yield (percentage of clean fleece weight to greasy fleece weight) and fibre diameter (microns). The code (wether.as) to the right performs a basic bivariate analysis of this data.
```

SheepID Site Bloodline Team Year GFW Yield FD
01013211 15.674.3 18.5
0101321126.071.2 19.6
010132113 8.075.7 21.5
01023211 1 5.370.920.8
01023 21 1 2 5.766.120.9
0102321136.870.3 22.1
01033211 1 5.0 80.7 18.9
0103321125.575.519.9
0103321137.076.621.9
\vdots
4013343 3517.975.9 22.6
4013343 35 2 7.870.3 23.9
4013343 35 3 9.076.2 25.4
4014343 3518.366.5 22.2
4014343 35 2 7.863.9 23.3
4014343 35 3 9.969.8 25.5
4015343 3516.975.120.0
4015343 35 2 7.671.2 20.3
4015343 35 3 8.578.1 21.7

```

\subsection*{8.2 Model specification}

The syntax for specifying a multivariate linear model in ASReml is
\(Y\)-variates \(\sim\) fixed [!r conrandom ] [!f sparse_fixed ]
[residual conresidual]
- \(Y\)-variates is a list of up to 20 traits (there may be more than 20 actual variates if the list includes sets of variates defined with ! G on page 49),
- fixed, conrandom and sparse_fixed are as in the univariate case (see Chapter 6) but involve the special term Trait and interactions with Trait.

The design matrix for Trait has a level (column) for each trait.
- Trait by itself fits the mean for each variate,
- in an interaction Trait.Fac fits the factor Fac for each variate and Trait.Cov fits the covariate Cov for each variate. An explanatory factor or covariable associated with Trait i can be fitted using at(Trait,i). Fac or at(Trait, i).Cov.

ASReml internally arranges the data so that \(n\) data records containing \(t\) traits each becomes \(n\) sets of \(t\) analysis records indexed by the internal factor Trait ie. \(n t\) analysis records ordered Trait within data record. If the data is already in this long form, use the ! ASMV \(t\) qualifier to indicate that a multivariate analysis is required.

\subsection*{8.3 Residual variance structures}

Using the notation of Section 2.1.11, consider a multivariate analysis with \(t\) traits and \(n\) units in which the data are ordered traits within units. An algebraic expression for the residual variance matrix in this case is
\[
\boldsymbol{I}_{n} \otimes \boldsymbol{\Sigma}
\]
where \(\boldsymbol{\Sigma}^{(t \times t)}\) is an unstructured variance matrix. This is the general form of residual variance structures required for multivariate analysis.

\subsection*{8.3.1 Specifying multivariate variance structures in ASReml}

A standard multivariate analysis is achieved using the the us() variance model function for the two random Trait components, and specifying the R structure for the residual error term as residual id(units).us(Trait).
- if provided, the initial values are for the lower triangle of the (symmetric) matrix specified row-wise,
```

Orange Wether Trial 1984-8
SheepID !I
TRIAL
BloodLine !I
TEAM *
YEAR *
GFW YLD FDIAM
wether.dat !skip 1
GFW FDIAM ~ Trait Trait.YEAR,
!r us(Trait).id(TEAM) us(Trait).id(SheepID)
residual id(units).us(Trait !GP)

```
- finding reasonable initial values can be a problem. When no initial values are provided (as in code box), ASReml takes half of the phenotypic variance matrix of the data as an initial value.

Since the variance component matrices for the TEAM and SheepID strata are not specified, ASReml will plug in values derived from the observed phenotypic variance matrix. !GP requests that the resulting estimated matrix be kept within the parameter space, ie. it is to be positive definite:

\subsection*{8.3 Residual variance structures}

The special qualifiers relating to multivariate analysis are ! ASUV and ! ASMV \(t\), see Table 5.4 for details:
- to use an error structure other than US for the residual stratum you must also specify ! ASUV (see Table 5.4) and include mv in the model if there are missing values,
- to perform a multivariate analysis when the data have already been expanded use ! ASMV \(t\) (see Table 5.4)
- \(t\) is the number of traits that ASReml should expect
- the data file must have \(t\) records for each multivariate record although some may be coded missing.

Note that, if no residual line is inserted the id(units). us(Trait) variance structure is assumed for multivariate data.

\section*{9 Command file: Genetic analysis}

\subsection*{9.1 Introduction}

In genetic analysis using an 'animal model' or 'sire model', we have data on subjects that are genetically related. The relationships are defined via a pedigree. The subject effects are therefore correlated and, assuming normal modes of inheritance, the correlation expected from additive effects can be computed from the pedigree provided all the direct links are in the pedigree. The matrix of such relationships is called the numerator relationship matrix. It is actually the inverse relationship matrix that is required for analysis and that is formed by ASReml. Users new to this subject might find notes Mixed Models for Genetic analysis \({ }^{1}\) by Julius van der Werf helpful.

For the more general situation where the pedigree based relationship matrix is not the appropriate/required matrix, the user can provide a general relationship matrix (GRM) matrix explicitly in a .grm file, or its inverse in a .giv file.

As an example for this chapter, we consider data presented in Harvey (1977) using the command file harvey.as.

\subsection*{9.2 The command file}

In ASReml the ! P data field qualifier indicates that the corresponding data field has an associated pedigree. The file containing the pedigree (harvey.ped in the example) for animal is specified after all field definitions and before the datafile definition. See below for the first 20 lines of harvey.ped together with the corresponding lines of the data file harvey.dat. All individuals appearing in the data file must appear in the pedigree file. When all the pedigree information (individual, male_parent, female_parent) appears as the first three fields
```

Pedigree file example
Animal !P
Sire !A
Dam
Line 2
AgeOfDam
adailygain
Y2
Y3
harvey.ped !ALPHA
harvey.dat
adailygain ~ mu Line,\#fixed model
!r nrmv(Animal !INIT 0.25)\#random model
residual idv(units)

```

\footnotetext{
\({ }^{1}\) http://www.vsni.co.uk/products/asreml/user/geneticanalysis.pdf
}

\subsection*{9.3 The pedigree file}
of the data file, the data file can double as the pedigree file. In this example the line harvey.ped ! ALPHA could be replaced with harvey.dat ! ALPHA. Often the pedigree file will include individuals for which there is no data, individuals that define genetic links between individuals with data. The nrm in nrmv(Animal) indicates that an additive (or numerator) relationship matrix ( nrm ) variance structure is constructed from the pedigree associated with Animal. The v in nrmv indicates that the nrm matrix is scaled by a variance parameter.

\subsection*{9.3 The pedigree file}

The pedigree file is used to construct the genetic relationships for fitting a genetic animal model and is required if the \(!P\) qualifier is associated with a data field. The pedigree file:
- has three fields; the identities of an individual and its parents (or sire and maternal grand sire if the ! MGS qualifier is specified (Table 9.1), Typically for animals, the male parent is listed first, but for trees, the mother tree may be first.
- an optional fourth field may supply inbreeding/selfing information used if the !FGEN qualifier is specified (Table 9.1),
- an additional field specifying the sex of the individual is required if the ! XLINK qualifier is specified (Table 9.1),
- is ordered by generation so that the line giving the pedigree of an individual appears above any line where that individual appears as a parent,
- is read free format; it may be the same file as the data file if the data file is free format and has the necessary identities in the first three fields, see below,
- is specified on the line immediately after all field definitions and before the data file line in the command file,
- use 0 or * to represent unknown parents.

\subsection*{9.4 Reading in the pedigree file}

\section*{harvey.ped harvey.dat}
```

101 SIRE_1 0
102 SIRE_1 0
103 SIRE_1 0
104 SIRE_1 0
105 SIRE_1 0
106 SIRE_1 0
107 SIRE_1 0
108 SIRE_1 0
109 SIRE_2 0
110 SIRE_2 0
111 SIRE_2 0
112 SIRE_2 0
113 SIRE_2 0
114 SIRE_2 0
115 SIRE_2 0
116 SIRE_2 0
117 SIRE_3 0
118 SIRE_3 0
1 1 9 SIRE_3 0
120 SIRE_3 0
\vdots

```
```

101 SIRE_1 0 1 3 192 390 2241
102 SIRE_1 0 1 3 154 403 2651
103 SIRE_1 0 1 4 185 432 2411
104 SIRE_1 0 1 4 183 457 2251
105 SIRE_1 0 1 5 186 483 2581
106 SIRE_1 0 1 5 177 469 2671
107 SIRE_1 0 1 5 177 428 2711
108 SIRE_1 0 1 5 163 439 2471
109 SIRE_2 0 1 4 188 439 2292
110 SIRE_2 0 1 4 178 407 2262
111 SIRE_2 0 1 5 198 498 1972
112 SIRE_2 0 1 5 193 459 2142
113 SIRE_2 0 1 5 186 459 2442
114 SIRE_2 0 1 5 175 375 2522
115 SIRE_2 0 1 5 171 382 1722
116 SIRE_2 0 1 5 168 417 2752
117 SIRE_3 0 1 3 154 389 2383
118 SIRE_3 0 1 4 184 414 2463
119 SIRE_3 0 1 5 174 483 2293
120 SIRE_3 0 1 5 170 430 2303
\vdots

```

\subsection*{9.4 Reading in the pedigree file}

The syntax for specifying a pedigree file in the ASReml command file is pedigree_file [qualifiers]
- the qualifiers \({ }^{2}\) are listed in Table 9.1,
- the identities (individual, parent_1, parent_2) are merged into a single list and the inverse relationship is formed before the data file is read,
- parent_1 is typically male for animal pedigrees (sire) but often female for plant pedigrees; it must be the XY parent if the ! XLINK qualifier is specified,
- when the data file is read, data fields with the ! P qualifier are recoded according to the combined identity list,
- the inverse relationship matrix is automatically associated with factors coded from the pedigree file unless some other covariance structure is specified. The inverse relationship matrix is specified with the variance model name NRM, the variance model function name nrm(),
- the inverse relationship matrix is written to ainverse.bin,

\footnotetext{
2 http://www.vsni.co.uk/products/asreml/user/PedigeeNotes.pdf contains details of these options.
}

\subsection*{9.4 Reading in the pedigree file}
- if ainverse.bin already exists ASReml assumes it was formed in a previous run and has the correct inverse
- ainverse.bin is read, rather than the inverse being reformed (unless !MAKE is specified); this saves time when performing repeated analyses based on a particular pedigree,
- delete ainverse.bin or specify !MAKE if the pedigree is changed between runs,
- identities are printed in the .sln and the .aif file,
- identities should be whole numbers less than 200,000,000 unless ! ALPHA is specified,
- pedigree lines for parents must precede their progeny,
- unknown parents should be given the identity number 0 ,
- if an individual appearing as a parent does not appear in the first column, it is assumed to have unknown parents, that is, parents with unknown parentage do not need their own line in the file,
- identities may appear as both male and female parents, for example, in forestry.

We refer the reader to the sheep genetics example on page 318 .
Table 9.1: List of pedigree file qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & description \\
\hline ! ALPHA & indicates that the identities are alphanumeric with up to 225 characters; otherwise by default they are numeric whole numbers \(<200,000,000\). If using long alphabetic identities, use !SLNFORM to see the full identity in the .sln file. \\
\hline \[
\begin{aligned}
& \text { !DIAG } \\
& \text { !AIF }
\end{aligned}
\] & causes the pedigree identifiers, the diagonal elements of the Inverse of the Relationship and the inbreeding coefficients for the individuals (calculated as the diagonal of \(\boldsymbol{A}-\boldsymbol{I}\) ), and a factor with levels Parent and Nonparent indicating if the individual is a parent (with progeny in the pedigree) or a non-parent (with no progeny in the pedigree) to be written to basename.aif. \\
\hline !FGEN [ \(f\) ] & indicates the pedigree file has a fourth field containing the level of selfing or the level of inbreeding in a base individual. In the fourth field, 0 indicates a simple cross, 1 indicates selfed once, 2 indicates selfed twice, etc.. A value between 0 and 1 for a base individual is taken as its inbreeding value. If the pedigree has implicit individuals (they appear as parents but not in the first field of the pedigree file), they will be assumed base non-inbred individuals unless their inbreeding level is set with ! FGEN \(f\) where \(0<f<1\) is the inbreeding level of such individuals. Individuals with one or both parents unknown, and without a specific non-zero inbreeding coefficient provided in the fourth filed of the pedigree, will are assigned an inbreeding coefficient \(f\). \\
\hline
\end{tabular}

\subsection*{9.4 Reading in the pedigree file}

\section*{List of pedigree file qualifiers}
qualifier description
!GIV instructs ASReml to write out the A-inverse in the format of .giv files. ! GIV 2 writes !GIV 2 the pedigree of the parents to basename_Parent.ped and the diagonal elements of the A-inverse to basename_Q.giv with offspring identifiers (see Section 9.7). If !GROUPS is also specified, this .giv file will include the ! GROUPSDF qualifier on its first line.
!GOFFSET \(o\) An alternative to group constraints (see ! GROUPS below) is to shrink the group effects by adding the constant \(o(>0)\) to the diagonal elements of \(\boldsymbol{A}^{-1}\) pertaining to groups. When a constant is added, no adjustment of the degrees of freedom is made for genetic groups.
Use ! GOFFSET -1 to add no offset but to suppress insertion of constraints where empty groups appear. The empty groups are then not counted in the DF adjustment.
!GROUPS \(g\) includes genetic groups in the pedigree. The first \(g\) lines of the pedigree identify genetic groups (with zero in both parent fields). All other lines must specify one of the genetic groups as parent if the actual parent is unknown.
You may insert groups identifiers with no members to define constraints on groups, that is to associate groups into supergroups where the supergroup fixed effect is formally fitted separately in the model. A constraint is added to the inverse which causes the preceding set of groups which have members to have effects which sum to zero. The issue is to get the degrees of freedom correct and to get the correct calculation of the Likelihood, especially in bivariate cases where DF associated with groups may differ between traits. The ! LAST qualifier (see page 80) is designed to help as without it, reordering may associate singularities in the \(\boldsymbol{A}\) matrix with random effects which at the very least is confusing. When the \(\boldsymbol{A}\) matrix incorporates fixed effects, the number of DF involved may not be obvious, especially if there is also a sparsely fitted fixed HYS factor. The number of Fixed effects (degrees of freedom) associated with GROUPS is taken as the declared number less twice the number of constraints applied. This assumes all groups are represented in the data, and that degrees of freedom associated with group constraints will be fitted elsewhere in the model.
! INBRED Each cross is assumed to be selfed several times to stabilize as an inbred line as is usual for cereals such as wheat, before being evaluated or crossed with another line. Since inbreeding is usually associated with strong selection, it is not obvious that a pedigree assumption of covariance of 0.5 between parent and offspring actually holds. Do not use the ! INBRED qualifier with the !MGS or !SELF qualifiers.
!LONGINTEGER indicates the identifiers are numeric integer with less than 16 digits. The default is integer values with less than 9 digits. The alternative is alphanumeric identifiers with up to 255 character indicated by ! ALPHA.
!MAKE forces ASReml to make the A-inverse (rather than trying to retrieve it from the ainverse.bin file).
!MEUWISSEN The default method for forming \(\boldsymbol{A}^{-1}\) is based on the algorithm of Meuwissen and Luo (1992).
!MGS indicates that the third identity is the sire of the dam rather than the dam.
! QUAAS \(\quad\) The original routine for calculating \(\boldsymbol{A}^{-1}\) in ASReml was based on Quaas (1976)
!REPEAT tells ASReml to ignore repeat occurrences of lines in the pedigree file.
Warning Use of this option will avoid the check that animals occur in generational order, but generational order is still required.

\section*{List of pedigree file qualifiers}
qualifier description
! SARGOLZAEI an alternative procedure for computing \(\boldsymbol{A}^{-1}\) was developed by Sargolzaei et al.(2005). !SELF \(s \quad\) allows partial selfing when second parent is unknown. It indicates that progeny from a cross where the second parent (male_parent) is unknown, is assumed to be from selfing with probability \(s\) and from outcrossing with probability \((1-s)\). This is appropriate in some forestry tree breeding studies where seed collected from a tree may have been pollinated by the mother tree or pollinated by some other tree (Dutkowski and Gilmour, 2001). Do not use the !SELF qualifier with the ! INBRED or !MGS qualifiers.
!SKIP \(n \quad\) allows you to skip \(n\) header lines at the top of the file.
!SORT causes ASReml to sort the pedigree into an acceptable order, that is parents before offspring, before forming the A-Inverse. The sorted pedigree is written to a file whose name has .srt appended to its name.
! XLINKR requests the formation of the (inverse) relationship matrix for the X chromosome as described by Fernando and Grossman (1990) where the first parent is XY and the second is XX. This NRM inverse matrix is formed in addition to the usual \(\boldsymbol{A}^{-1}\) and can be accessed as GRM1 or as specified in the output. The pedigree must include a fourth field which codes the SEX of the individual. The actual code used is up to the user and deduced from the first line which is assumed to be a an XY individual. Thus, whatever string is found in the fourth field on the first line of the pedigree is taken to mean XY and any other code found on other records is taken to mean XX.

\subsection*{9.5 Genetic groups}

If all individuals belong to one genetic group, then use 0 as the identity of the parents of base individuals. However, if base individuals belong to various genetic groups this is indicated by the !GROUPS qualifier and the pedigree file must begin by identifying these groups. All base individuals should have group identifiers as parents. In this case the identity 0 will only appear on the group identity lines, as in the following example where three sire lines are fitted as genetic groups.
```

Genetic group example
Animal !P
Sire !A
Dam
Line 2
AgeOfDam
adailygain
Y2
Y3
harveyg.ped !ALPHA !GROUPS 3
harvey.dat
adailygain ~ mu Line, \# fixed model
!r grm1v(Animal !INIT 0.25)) \# random model
residual idv(units)

```
```

G1 0 0
G2 0 0
G3 0 0
SIRE_1 G1 G1
SIRE_2 G1 G1
SIRE_3 G1 G1
SIRE_4 G2 G2
SIRE_5 G2 G2
SIRE_6 G3 G3
SIRE_7 G3 G3
SIRE_8 G3 G3
SIRE_9 G3 G3
101 SIRE_1 G1
102 SIRE_1 G1
103 SIRE_1 G1
:
163 SIRE_9 G3
164 SIRE_9 G3
165 SIRE_9 G3

```

Important It is usually appropriate to allocate a genetic group identifier where the parent is unknown.

\subsection*{9.6 Reading a user defined (inverse) relationship matrix}

Sometimes a relationship matrix is required other than the one ASReml can produce from the pedigree file. We call this a GRM (General Relationship Matrix). The inverse of a GRM is a GIV matrix. The user can provide the relationship matrix in a .grm file and ASReml will invert it to form the GIV matrix (since it is the inverse that is used in the mixed model equations). Alternatively, the user can provide a .giv file containing the inverted GRM matrix.

The syntax for specifying a GRM file (say name.grm) or the GIV file (say name.giv) is name. [s/d]grm [!SKIP \(n\) ][!DENSEGRM [ \(o\) ]][!GROUPDF \(n\) ][!ND|!PSD|!NSD][!PRECISION \(n\) ] or
name. [s|d]giv[!SKIP \(n\) ][!DENSEGIV [ \(o\) ] ][!GROUPDF \(n\) ][!SAVEGIV \(f\) ]
- the named file must have a .giv, .grm, .sgiv, .sgrm, .dgiv or .dgrm extension,
-. sgiv and .sgrm files are binary format files and will be read lower triangle row-wise assuming single precision,
- .dgiv and .dgrm files are binary format files and will be read lower triangle row-wise assuming double precision,
- the named file will be read assuming single/double precision lower triangle row-wise,

\subsection*{9.6 Reading a user defined (inverse) relationship matrix}
- the G (inverse) files must be specified on the line(s) immediately prior to the data file line after any pedigree file,
- up to 98 G (inverse) matrices may be defined,
- the file must be in SPARSE format unless the !DENSE qualifier is specified,
- a dense format file has the matrix presented lower triangle rowwise, with each row beginning on a new line,
- a sparse format file must be free format with three numbers per line, namely row column value
defining the lower triangle row-wise of the matrix,
- the file must be sorted column within row,
- every diagonal element must be present; missing off-diagonal elements are assumed to be zero cells,
- the file is used by associating it with a fac-

\footnotetext{
111
221
331
441
551.0666667
\(65-0.2666667\)
661.0666667
771.0666667
87 -0. 2666667
881.0666667
991.0666667
\(109-0.2666667\)
10101.0666667
11111.0666667
1211 -0. 2666667
12121.0666667
} tor in the model. The number and order of the rows must agree with the size and order of the associated factor,
- the !SKIP \(n\) qualifier tells ASReml to skip \(n\) header lines in the file.

The .giv file presented in the code box gives the \(G\) inverse matrix on the right
\[
\left[\begin{array}{cc}
\boldsymbol{I}_{4} & \mathbf{0} \\
& \\
\mathbf{0} & \boldsymbol{I}_{4} \otimes\left[\begin{array}{rr}
1.067 & -0.267 \\
-0.267 & 1.067
\end{array}\right]
\end{array}\right]
\]

The easiest way to ensure the variable is coded to match the order of the GRM file is to supply a list of level names in the variable definition. For example, genotype !a !L Gorder.txt would code the variable genotype to agree with the order of level names present in the file Gorder.txt which would be the order used in creating the GRM/GIV matrix.

If the file has a .grm file extension, ASReml will invert the GRM matrix. If it is not Positive Definite, the job will abort unless an appropriate qualifier ! ND, !PSD or ! NSD is supplied. These qualifiers do not modify the matrix, they just instruct ASReml to proceed regardless. If the matrix has positive and negative eigenvalues, ! ND instructs ASReml to ignore the condition and proceed anyway. If the matrix is positive semi-definite (positive and zero eigenvalues), ! PSD allows ASReml to introduce Lagrangian multipliers to accommodate linear dependencies and rows with zero elements, and allows ASReml to proceed. Linear depen-

\subsection*{9.6 Reading a user defined (inverse) relationship matrix}
dencies occur, for example, when the list of individuals includes clones. Rows with zero elements occur when the GRM represents a dominance matrix, and the list of individuals includes fully inbred individuals which, by definition, have zero dominance variance. If the matrix has positive, zero and negative eigenvalues, ! NSD may be used to allow ASReml to continue. The zero eigenvalues are handled as for !PSD. Sometimes, with negative eigenvalues, the iteration sequence may fail as some parameter values will result in a negative residual sum of squares.

If the specified .giv file does not exist but there is a .grm file of the same name, ASReml will read and invert the .grm file, and write the inverse to the .giv file if !SAVEGIV \([f]\) is specified. Its is written in DENSE format unless \(f=1\). ! SAVEGIV 3 writes the GIV matrix as an .sgiv file. !SAVEGIV 4 writes the GIV matrix as a .dgiv file, where .sgiv is a single precision lower triangle row-wise binary file and .dgiv is a double precision lower triangle row-wise binary file. !PRECISION \(n\) changes the value used to declare a singularity when inverting a GRM file from 1D-7 to 1D-n.

A GRM can be associated with a factor i by using the variance model function \(\operatorname{grm} i(f)\); which associates the \(i\) th GRM with factor \(f\), for example,
```

grm1v(animal !INIT 0.12)

```
or
```

coruh(site).grm2(variety)

```

It is imperative that the GIV/GRM matrix be defined with the correct row/column order, the order that matches the order of the levels in the factor it is associated with. The easiest way to check this is to compare the order used in the GIV/GRM file with the order reported in the . \(\operatorname{sln}\) file when the model is fitted.

Another example of !L (Section 5.4.1) is in analysis on data with 2 relationship matrices based on two separate pedigrees. ASReml only allows one pedigree file to be specified but can create an inverse relationship matrix and store the result in a GIV file. So, 2 relationship matrices based on two separate pedigrees may be used by generating a GIV file from one pedigree and then using that GIV file and the other pedigree in a subsequent run. To process the GIV file properly, we must also generate a file with identities as required for the GIV matrix. An example of this is if the file Hybrid.as includes
```

!PART 1
Mline !P
Fline !A
Mline.ped !GIV !DIAG \#!GIV generates the file Hybrid1A.giv and !DIAG
\#generates Hybrid1.aif which contains the identifier names
!PART 2 \#reads in inverse additive relationship matrix generated in !PART 1
Mline !A !L Hybrid1.aif !SKIP 1\#associates identifier names with levels of Mline
\#used in giv file
Fline !P

```

\subsection*{9.6 Reading a user defined (inverse) relationship matrix}
```

Fline.ped !GIV !DIAG
Hybrid1_A.giv \#formed in part 1 from Mline.ped
Hybrid.asd !SKIP 1
... grm1(Mline) nrm(Fline) \#using new synonyms and functions

```

\subsection*{9.6.1 Genetic groups in GIV matrices}

If a user creates a GIV file outside ASReml which has fixed degrees of freedom associated with it, a !GROUPSDF \(n\) qualifier is provided to specify the number of fixed degrees of freedom ( \(n\) ) incorporated into the GIV matrix. The !GROUPSDF qualifier is written into the first line of the .giv matrix produced by the !GIV qualifier of the pedigree line if the pedigree includes genetic groups, and will be honoured from there, when reusing a GIV matrix formed from a pedigree with genetic groups in ASReml.

When groups are constrained, then it will be the number of groups less number of constraints. For example, if the pedigree file qualified by !GROUPS 7 begins
A 00
B 00
C 00
ABC 00 \# ABC is not present in the subsequent pedigree lines
D 00
E 00
DE 00 \# DE is not present in the subsequent pedigree lines
there are actually only 5 genetic groups and two constraints so that the fixed effects for A, \(B\) and \(C\) sum to zero, and for \(D\) and \(E\) sum to zero leaving only 3 fixed degrees of freedom fitted. Therefore if the \(\boldsymbol{A}\) inverse for this pedigree was saved, it will contain ! GROUPSDF 3 in the GIV file.

\subsection*{9.6.2 The example continued}

Below is an extension of harvey.as to use harvey.giv which is partly shown to the right. This \(G\) inverse matrix is an identity matrix of order 74 scaled by 0.5 , that is, \(0.5 \boldsymbol{I}_{74}\). This model is simply an example which is easy to verify. Note that harvey.giv is specified on the line immediately preceding harvey.dat.
9.7 The reduced animal model (RAM)
```

giv file example
Animal !P
Sire !P
Dam
Line 2
AgeOfDam
adailygain
Y2
Y3
harvey.ped !ALPHA
harvey.giv \# giv structure file
harvey.dat
adailygain ~ mu Line, \# fixed model
!r grm1v(Sire !INIT 0.25) \# random model
residual idv(units)

```
```

01 01 . 5
02 02 . 5
03 03 . 5
04 04 . 5
05 05 . 5
.
.
72 72 . 5
73 73 . 5
74 74 . 5

```

Model term specification associating the harvey.giv structure to the coding of sire takes precedence over the relationship matrix structure implied by the ! P qualifier for sire. In this case, the ! \(P\) is being used to amalgamate animals and sires into a single list, and the .giv matrix must agree with the list order.

\subsection*{9.7 The reduced animal model (RAM)}

The reduced animal model was devised to reduce the computation involved in fitting a large animal model. When there is at most one record per individual, a large proportion of the individuals are non-parents and have no progeny and there is interest in predictions for parents alone. This can happen in large forestry trials. The reduced animal model expresses the non-parent genetic effect in terms of parent effects and a Mendelian sampling term that is combined with the residual effect for the residual. We consider the case when there is data on parents and non-parents and some individuals are inbred.

An example tree model for a single trait and a single site might be
DBH \(\sim\) mu !r nrmv(tree) plot ar1v(column).ar1 (row)
residual idv(units)
since trees are often planted in plots of say 5 trees. This is a spatial analysis; the idv (units) term is required so that error variance is not transferred to the nrmv (tree) term since trees are unreplicated.

This analysis requires a pedigree file, say TreePed.csv, and if the !DIAG qualifier is specified on the pedigree line, the resulting .aif file will contain the inbreeding level for every tree in the pedigree, the diagonal of the \(\boldsymbol{A}^{-1}\) matrix and a N/P code distinguishing parents (with progeny) from non-parents (without progeny).

To analyse the data using the RAM, we need to incorporate these last two columns into the data file (which can be done with the !MERGE statement). If there is data on parents, further

\subsection*{9.7 The reduced animal model (RAM)}
processing of the data file is required: create a copy of the 'tree' field, call it say 'parent', and change it to ' 0 ' for the progeny records.

Assume our data file ramdbh.txt has fields tree mum dad row column plot DBH AIdiag OP parent and we have deleted the non-parent rows from the full pedigree file to form ParentPed.txt. If you have a pedigree file for all trees, processing that pedigree with the ! GIV 2 qualifier will create a pedigree file just containing the parents and also the Q.giv file for the non-parent referred to below. If we assume a heritability of 0.1111 so that the ratio of genetic variance to residual variance is 0.125 , the following model will estimate the breeding values for the parents directly:
```

RAM BLUP model
tree !
mum !P !*V21
dad !P !*V21
row *
column *
plot *
DBH
AIdiag !*V21
NP !A !L Nonparent Parent
parent !P
filter !=NP !==1 \# create Nonparent filter
mum !*filter
dad !*filter
AIdiag !*filter
WT !=0.125 !+AIdiag !^-1 !*AIdiag !+1 !-filter
ParentPed.txt
ramdbh.txt
DBH !WT WT ~ mu,
!r str(parent and(mum,0.5) and(dad.0.5) id(1).nrmv(parent !0.125)),
plot ar1v(column).ar1(row)
residual idv(units)

```

In this model,
- NP !A !L Nonparent Parent ensures the NP data field is coded 1 for non-parents and 2 for parents.
- filter \(!=\) NP \(!==1\) creates a variable that is 1 for non-parents and zero for parents.
- The !*filter transformations put mum, dad and AIdiag information to zero for parents.
- WT !=0.125 !+AIdiag ! ^-1 !*AIdiag !+1 !-V21 creates a weight variable which is 1 for parent records, \(q /(q+\gamma)\) for a non-parent record with \(q\) the respective diagonal element
of AIdiag, with \(q=2\) for non-inbred non-parents, and \(\gamma\) is the variance ratio \(\sigma_{g}^{2} / \sigma_{e}^{2}, 0.125\) in this case. This weighting corresponds to a residual variance for a non-parent record of \(\left(\sigma_{g}^{2} / q\right)+\sigma_{e}^{2}\).
- If there is no direct information on parents, the parent term is replaced by zero, where zero is a variable with zero elements.
- If dad is unknown, the and(dad) term is dropped.
- The BLUPs of a non-parent will need to be calculated outside ASReml by adding \([\gamma /(q+\gamma)]\) times its residual to the average of the parental BLUPs.

Prediction of parental values with assumed heritability was the main motivation for the development of the reduced animal model. Estimation of genetic variance parameters is a little more complicated and the computational gains of removing non-parent genetic values from the estimation procedure only apply if it is reasonable to form a small number of groups with roughly similar AIdiag values. If AIG is this group factor then one can estimate residual variances in each group using sat(AIG).idv (units) and use the variance parameter linear model facilities to constrain the residual variances and the parent variance to be a function of the genetic and residual variances.

\subsection*{9.8 Factor effects with large Random Regression models}

One use of the GRM matrix is to allow more computationally efficient fitting of random regression models associating \(\boldsymbol{u}\), a vector of \(f\) factor effects with \(\boldsymbol{v}\) a vector of \(m\) regression effects through the model \(\boldsymbol{u}=\boldsymbol{M} \boldsymbol{v}\) where the matrix \(\boldsymbol{M}\) contains \(m\) regressor variables for each of the \(f\) levels of the factor. Direct fitting of the regression effects is facilitated by using the my basis function (mbf function) associating the regressor variables to the levels of the factor, essentially fitting \(\boldsymbol{Z} \boldsymbol{M} \boldsymbol{v}\) where \(\boldsymbol{Z}\) is the design matrix linking observations to the levels of the factor. But if \(m\) is much bigger than \(f\), it is more computational efficient to fit an equivalent model \(\boldsymbol{Z} \boldsymbol{u}\) with a variance structure for \(\boldsymbol{u}\) based on \(\boldsymbol{M} \boldsymbol{M}^{\prime}\). ASReml can read the matrix \(\boldsymbol{M}\) associated with a factor and group of regressor variables from a .grr file, construct a GRM matrix \(\left(\boldsymbol{G}=\boldsymbol{M} \boldsymbol{M}^{\prime} / s\right)\), fit the equivalent model and report both factor and regressor predictions. One common case of this model is when \(\boldsymbol{u}\) represents genotype effects, the regressors represent SNP marker counts (typically \(0 / 1 / 2\) ) and \(\boldsymbol{v}\) are marker effects.

The .grr file is specified after any pedigree file and before the data file (with any other GRM files). There may only be one .grr file. It is assumed to contain a row for each level of the factor, each row containing \(m\) regressor values. Optionally the factor level name associated with the i-th row can be included before the relevant regressor values. Also a heading row might include a name for each field/regressor variable. Superfluous fields before the factor or regressor fields can be skipped and superfluous rows before the regressor information can be skipped.

\subsection*{9.8 Factor effects with large Random Regression models}

The syntax for specifying and reading the .grr file is
M.grr [!CSKIP \(c_{1}\) ] Factor [f] [!NOID] [!CSKIP \(c_{2}\) ] Regressors [m] [!NONAMES] [!SKIP \(s\) ] where
M.grr is the name of the file to be read, ! CSKIP \(c_{1}\) indicates \(c_{1}\) fields are to be skipped before the factor identifiers are read,

Factor is the name of the variable in the data that is associated with the regressors, \(f\) sets the maximum number of levels (default 1000) of Factor with regressor data; ASReml will count the actual number,
!NOID indicates that the factor identifiers are not present in the .grr file,
! CSKIP \(c_{2}\) indicates \(c_{2}\) fields are to be skipped before the regressor variables are read,
Regressors is the name for the set of regressor variables,
\(m\) sets the number of regressor variables (default is the number of names found); must be set if there are extraneous fields to be ignored,
!SKIP \(s\) specifies how many lines are to be skipped before reading the regressor data, ! NONAMES indicates there is no line containing the individual names of the regressor variables; otherwise names are taken from the first (non-skipped) line in the file.

If the factor identifiers are not present (!NOID), ASReml assumes that the order of the factor classes in the data file matches the order in the .grr file. If the factor identifiers are present, ASReml uses the identifiers obtained from the .grr file to define the order of the factor classes when the data is read; any extra identifiers in the data not in the . grr file are appended at the end of the factor level name list. If ! NOID is set, identifiers in the .grr file are not needed and if present should be skipped using !CSKIP.

Values are typically TAB, COMMA or SPACE separated but may be packed (no separator) when all values are integers \(0 / 1 / 2\). Missing values in the regression variables may be represented by \(*\), NA. Invalid data is also treated as missing. Missing values are replaced by the mean of the respective regressor. Alternative missing data methods that involve imputation from neighbouring markers have not been implemented.

Some general qualifiers are:
!SAVEGIV instructs ASReml to write the \(\boldsymbol{G}\) matrix in .dgiv format,
! PSD \(s\) declares that the derived variance matrix may have up to \(s\) singularities,
!PEV requests calculation of Prediction Error Variance of marker effects which are reported in the .mef file. Calculation of Prediction error variances is computationally very expensive, ! CENTRE \([c]\) requests ASReml to centre the regressors at \(c\) if \(c\) is specified else at the individual regressor means; otherwise the \(\boldsymbol{G}\) matrix is formed from uncentered regressors. Note that centring introduces a singularity in the G matrix and !PSV \(s\) will need to be set.

Other qualifiers relate specifically to whether the regressors are markers. Markers are typically coded \(0 / 1 / 2\) being counts of the minor allele. However, if they are imputed, they will take real values between 0 and 2 . Since marker files may be huge,

\subsection*{9.8 Factor effects with large Random Regression models}
!SMODE \(b\) sets the storage mode for the regressor data, indicating whether it is marker data: \(b=2\) sets 2 bit storage for strictly \(0 / 1 / 2\) marker data, \(b=8\) (the default) sets 8bit storage useful for marker data with imputed values having 2 digits after the decimal, \(b=16\) sets 16bit storage useful for marker data with imputation with more than 2 digits and \(b=32\) sets 32 bit real storage and should be used for non-marker data,
! RANGE \(l h\) indicates the marker scores range \(l: h\) and are to be transformed to have a range 0:2,
! GSCALE \(s\), controls the scaling of the GRM matrix. If unspecified \(s=\Sigma 2 p(1-p)\) is used for marker data, \(s=1\) for non marker data (!SMODE 32). Scaling is often used with centred marker data to scale the \(\boldsymbol{M} \boldsymbol{M}^{\prime}\) matrix so that it is a genomic matrix.
```

Example
!WORK 1
Nassau Clone Data
Nfam 71 !A
Nfemale 26 !A
Nmale 37 !A
Clone !A 860
rep 8
iblk 80
culture !A
DBH6
snpData.grr Clone Marker
nassau.cSv !MAXIT 30 !SKIP 1 !DFF -1
DBH6 ~ mu culture/rep !r grm1v(Clon) 0.27 Clone 0.15 rep.iblk 0.31

```
where snpData.grr is first used to declare Clone identifiers (taken from the first field) in the correct order, and then contains the marker scores; it looks like
Genotype, 0-10024-01-114, 0-10037-01-257, 0-10040-02-394, ..
140099, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, \(2 \ldots\)
141099, 2, 2, 0, 0, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 0, 2, 2, 2, 2, 1, 2, 2, 1, 1...

547853,2,2,1,2,2,2,1,2,2,0,2,1,2,2,2,2,2,2,2,1,2,...
547966,2,2,1,1,1,2,0,2,2,1,2,2,2,2,2,2,2,2,2,1,2,...
\(548082,2,2,1,2,2,2,1,2,1,2,2,1,2,2,1,2,2,2,2,1,2, \ldots\)
The primary output follows.
```

Nfam 71 !A
Nfemale 26 !A
Nmale 37 !A
Clone !A 860
MatOrder 914 !A

```

\subsection*{9.8 Factor effects with large Random Regression models}
rep 8 ! A
iblk 80 !A
prop 1 ! A
culture 2 !A
treat 2 ! \(A\)
measure 1 ! \(A\)
CWAC6 ! M-9
Parsing: snpData.grr Clone
Class names for factor "Clone" are initialized from the .grr file.
GRR Header line begins: Genotype,0-10024-01-114,0-10037-01-257,0 4854 Marker labels found
Marker labels 0-10024-01-114 ... UMN-CL98Contig1-
Notice: The header line indicates there are 4854 regressors in the file.
Notice: SNP data line begins: 140099,2,2,1,2,2,2,2,2,2,1,2,1,2,1,1,
Notice: Markers coded -9 treated as missing.
Marker data [0/1/2] for 923 genotypes and 4854 markers read from snpData.grr 160414 missing Regressor values ( \(3.6 \%\) ) replaced by column average!

Regressor values ranged 0.00 to 2.00
Regressor Means ranged 1.00 to 2.00
Sigma2p(1-p) is 1057.12558
GIV1 snpData.grr 923 9 -946.27
QUALIFIERS: !MAXIT 30 !SKIP 1 !DFF -1
QUALIFIER: !DOPART 2 is active
Reading nassau_cut_v3.csv FREE FORMAT skipping 1 lines

Univariate analysis of HT6
Summary of 6399 records retained of 6795 read

```

 22 grm1(Clone) 923
 23 rep.iblk 640 6 rep : 8 7 iblk : 80
Forming 2508 equations: 19 dense.
Initial updates will be shrunk by factor 0.316
Notice: LogL values are reported relative to a base of -30000.000
Notice: 11 singularities detected in design matrix.
1 LogL=-2845.97 S2= 8956.5 6390 df
2 LogL=-2799.30 S2= 8568.1 6390 df
3 LogL=-2759.03 S2= 8131.3 6390 df
4 LogL=-2741.99 S2= 7766.2 6390 df
5 LogL=-2741.40 S2= 7702.9 6390 df
6 LogL=-2741.40 S2= 7700.1 6390 df
- - - Results from analysis of HT6 - - -
Akaike Information Criterion 65490.79 (assuming 4 parameters).
Bayesian Information Criterion 65517.84

Model_Term		Gamma	Sigma	Sigma/SE	\%	C
rep.iblk	IDV_V	640	0.307856	2370.52	13.00	0
grm1 (Clone)	GRM_V	923	0.275656	2122.58	5.82	0
Clone	IDV_V	926	0.152554	1174.68	6.08	0

```


Notes:
- of 926 clones identified, 860 have data and 923 have genomic data.
- The .res file contains additional details about the analysis including a listing of the larger marker effects. All marker effects are reported in the .mef file.
- Particular columns of the .grr data can be included in the model using the grr (Factor, i) model term where and \(i\) specifies which (number) regressor variable to include.
\begin{tabular}{rlrr} 
Listing of the larger marker effects & \\
368 & \(0-12761-01-121\) & 1.40736 & 0.00000 \\
617 & \(0-14383-01-111\) & 1.26081 & 0.00000 \\
777 & \(0-15417-01-138\) & -1.25597 & 0.00000 \\
1246 & \(0-18644-02-210\) & 1.22522 & 0.00000 \\
1903 & \(0-6963-01-202\) & -1.24800 & 0.00000 \\
2102 & \(0-8683-02-432\) & 1.15496 & 0.00000 \\
2445 & \(2-1563-02-244\) & -1.35181 & 0.00000
\end{tabular}

\subsection*{9.8 Factor effects with large Random Regression models}
\begin{tabular}{llrr}
2497 & 2-2167-01-413 & -1.21339 & 0.00000 \\
3180 & 2-8668-03-42 & -1.21629 & 0.00000 \\
3521 & CL1577Contig1-03 & -1.15833 & 0.00000 \\
3802 & CL2573Contig1-03 & 1.17005 & 0.00000 \\
4195 & CL595Contig1-01- & -1.19330 & 0.00000 \\
4351 & UMN-1397-01-416 & -1.34916 & 0.00000
\end{tabular}

\section*{10 Tabulation of the data and prediction from the model}

\subsection*{10.1 Introduction}

This chapter describes the tabulate directive and the predict directive introduced in Section 3.4 under Prediction.

Tabulation is the process of forming simple tables of averages and counts from the data. Such tables are useful for looking at the structure of the data and numbers of observations associated with factor combinations. Multiple tabulate directives may be specified in a job.

Prediction is the process of forming a linear function of the vector of fixed and random effects in the linear model to obtain an estimated or predicted value for a quantity of interest. It is primarily used for predicting tables of adjusted means. If a table is based on a subset of the explanatory variables then the other variables need to be accounted for. It is usual to form a predicted value either at specified values of the remaining variables, or averaging over them in some way.

\subsection*{10.2 Tabulation}

A tabulate directive is provided to enable simple summaries of the data to be formed for the purpose of checking the structure of the data. The summaries are based on the same records as are used in the analysis of the model fitted in the same run. In particular, it will ignore records that exist in the data file but were dropped as the data was read into ASReml, either explicitly using !DV or implicitly because the dependent variable had missing values. Multiple tabulate statements are permitted either immediately before or after the linear model. If a linear (mixed) model is not supplied, tabulation is based on all records.

The tabulate statement has the form
tabulate response_variables [!WT weight!COUNT !DECIMALS [d] !SD !RANGE !STATS !FILTER filter !SELECT value] \(\sim\) factors

\subsection*{10.3 Prediction}
- tabulate is the directive name, appearing on a new line,
- response_variables is a list of variates for which means are required,
- !WT weight nominates a variable containing weights,
- ! COUNT requests counts as well as means to be reported,
- !DECIMALS \([d](1 \leq d \leq 7)\) requests means be reported with \(d\) decimal places. If omitted, ASReml reports 5 significant digits; if specified without an argument, 2 decimal places are reported,
- ! RANGE requests the minimum and maximum of each cell be reported,
- !SD requests the standard deviation within each cell be reported,
- ! STATS is shorthand for ! COUNT ! SD ! RANGE,
- !FILTER filter nominates a factor for selecting a portion of the data,
- ! SELECT value indicates that only records with value in the filter column are to be included,
- \(\sim\) factors identifies the factors to be used for classifying the data. Only factors (not covariates) may be nominated and no more than six may be nominated.

ASReml prints the multiway table of means omitting empty cells to a file with extension .tab.

\subsection*{10.3 Prediction}

\subsection*{10.3.1 Underlying principles}

Our approach to prediction is a generalization of that of Lane and Nelder (1982) who only consider fixed effects models. They form fitted values for all combinations of the explanatory variables in the model, then take marginal means across the explanatory variables not relevent to the current prediction. Our case is more general in that we also consider the case of associated factors (see below) and options for random effects that appear in our (mixed) models. A formal description can be found in Gilmour et al. (2004) and Welham et al. (2004).

Associated factors have a particular one to many association such that the levels of one factor (say Region) define groups of the levels of another factor (say Location). In prediction, it is necessary to correctly associate the levels of associated factors.

Terms in the model may be fitted as fixed or random, and are formed from explanatory variables which are either factors or covariates. For this exposition, we define a fixed factor as an explanatory variable which is a factor and appears in the model in terms that are fixed (it may also appear in random terms), a random factor as an explanatory variable which is a factor and appears in the model only in terms that are fitted as random. Covariates generally appear in fixed terms but may appear in random terms as well (random regression). In special cases they may appear only in random terms.

Random factors may contribute to predictions in several ways. They may be evaluated at levels specified by the user, they may be averaged over, or they may be ignored (omitting all model terms that involve the factor from the prediction). Averaging over the set of random effects gives a prediction specific to the random effects observed. We call this a 'conditional' prediction. Omitting the term from the prediction model produces a prediction at the population average (often zero), that is, substituting the assumed population mean for an predicted random effect. We call this a 'marginal' prediction. Note that in any prediction, some random factors (for example Genotype) may be evaluated as conditional and others (for example Blocks) at marginal values, depending on the aim of prediction.

For fixed factors there is no pre-defined population average, so there is no natural interpretation for a prediction derived by omitting a fixed term from the fitted values. Therefore any prediction will be either for specific levels of the fixed factor, or averaging (in some way) over the levels of the fixed factor. The prediction will therefore involve all fixed model terms.

Covariates must be predicted at specified values. If interest lies in the relationship of the response variable to the covariate, predict a suitable grid of covariate values to reveal the relationship. Otherwise, predict at an average or typical value of the covariate. The default is to predict at the mean covariate value. Omission of a covariate from the prediction model is equivalent to predicting at a zero covariate value, which is often not appropriate (unless the covariate is centred).

Before considering the syntax, it is useful to consider the conceptual steps involved in the prediction process. Given the explanatory variables (fixed factors, random factors and covariates) used to define the linear (mixed) model, the four main steps are
(a) Choose the explanatory variable(s) and their respective level(s)/value(s) for which predictions are required; the variables involved will be referred to as the classify set and together define the multiway table to be predicted. Include only one from any set of associated factors in the classify set.
(b) Note which of the remaining variables will be averaged over, the averaging set, and which will be ignored, the ignored set. The averaging set will include all variables involved in the fixed model but not in the classify set. Ignored variables may be explicitly added to the averaging set. The combination of the classify set with these averaging variables defines a multiway hyper-table. Only the base factor in a set of associated factors formally appears in this hyper-table, regardless of whether it is fitted as fixed or random. Note that variables evaluated at only one value, for example, a covariate at its mean value, can be formally

\subsection*{10.3 Prediction}
introduced as part of the classify or averaging set.
(c) Determine which terms from the linear mixed model are to be used when predicting the cells in the multiway hyper-table in order to obtain either conditional or marginal predictions. That is, you may choose to ignore some random terms in addition to those ignored because they involve variables in the ignored set. All terms involving associated factors are by default included.
(d) Choose the weights to be used when averaging cells in the hyper-table to produce the multiway table to be reported. The multiway table may require partial and/or sequential averaging over associated factors. Operationally, ASReml does the averaging in the prediction design matrix rather than actually predicting the cells of the hyper-table and then averaging them.

The main difference in this prediction process compared to that described by Lane and Nelder (1982) is the choice of whether to include or exclude model terms when forming predictions. In linear models, since all terms are fixed, factors not in the classify set must be in the averaging set, and all terms must contribute to the predictions.

\subsection*{10.3.2 Predict syntax}

The first step is to specify the classify set of explanatory variables after the predict directive. The predict statement(s) may appear immediately after the model line (before or after any tabulate statements) or after the \(R\) and \(G\) structure lines. The syntax is
```

NIN Alliance trial 1989 variety !A
\vdots
column 11
nin89.asd !skip 1
yield ~ mu variety !r idv(repl)
predict variety

```
predict factors [qualifiers]
- predict must be the first element of the predict statement, in upper or lower case,
- factors is a list of the variables defining a multiway table to be predicted; each variable may be followed by a list of specific levels/values to be predicted, or the name of the file that contains those values,
- the qualifiers, listed in Table 10.1, modify the predictions in some way,
- a predict statement may be continued on subsequent lines by terminating the current line with a comma,
- several predict statements may be specified.

ASReml parses each predict statement before fitting the model. If any syntax problems are encountered, these are reported in the .pvs file after which the statement is ignored: the job is completed as if the erroneous prediction statement did not exist.

The predictions are formed as an extra process in the final iteration and are reported to the .pvs file. Consequently, aborting a run by creating the ABORTASR.NOW file (see page 68) will cause any predict statements to be ignored. Create FINALASR.NOW instead of ABORTASR. NOW to make the next iteration, the final iteration in which prediction is performed.

By default, factors are predicted at each level, simple covariates are predicted at their overall mean and covariates used as a basis for splines or orthogonal polynomials are predicted at their design points. Covariates grouped into a single term (using !G qualifier page 48) are treated as covariates.

Prediction at particular values of a covariate or particular levels of a factor is achieved by listing the levels/values after the variate/factor name. Where there is a sequence of values, use the notation \(a b \ldots n\) to represent the sequence of values from \(a\) to \(n\) with step size \(b-a\). The default stepsize is 1 (in which case \(b\) may be omitted). A colon (:) may replace the ellipsis (...). An increasing sequence is assumed. When giving particular values for factors, the default is to use the coded level ( \(1: n\) ) rather than the label (alphabetical or integer). To use the label, precede it with a quote ("). Where a large number of values must be given, they can be supplied in a separate file, and the filename specified in quotes. The file form does not allow label coding or sequences. (See the discussion of !PRWTS for an example.)

Model terms mv and units are always ignored.
Model terms which are functions (such as at(, and(, pol(, sin(, spl(, ...) including those defined using ! CONTRAST, !GROUP, !SUBGROUP, !SUBSET and !MBF are implicitly defined through their base variables and can not be directly referenced in the classify and average sets. For example,
```

!GROUP Year YearLoc 1 1 1 2 2 3 3 3 4 4

```
forms a new factor Year with 4 levels from the existing factor YearLoc with 10 levels. The prediction must be in terms of YearLoc, not Year even if YearLoc does not formally appear in the model. For default averaging in prediction, the weights for the levels of the grouped factor (Year) will be (in this example) 0.30 .20 .30 .2 derived from the weights for the base factor (YearLoc). Use !AVE YearLoc \(\left\{\begin{array}{llllllll}2 & 2 & 3 & 3 & 2 & 2 & 3\end{array}\right\} / 24\) to produce equal weighting of Year effects.

If ! \(G\) sets of variables are included in the classify set, only the first variable is reported in labelling the predict values, except that for !G !MM sets, the marker position is reported.

Having identified the explanatory variables in the classify set, the second step is to check the averaging set. The default averaging set is those explanatory variables involved in fixed effect model terms that are not in the classify set. By default variables that are not in any ! ASSOCIATE list and that only define random model terms are ignored. Use the !AVERAGE, ! ASSOCIATE or !PRESENT, qualifiers to force variables into the averaging set.

The third step is to check the linear model terms to use in prediction. The default is that all model terms based entirely on variables in the classifying and averaging sets are used. Two qualifiers allow this default to be modified by adding (!USE) or removing (!IGNORE)

\subsection*{10.3 Prediction}
model terms. The qualifier ! ONLYUSE explicitly specifies the model terms to use, ignoring all others. The qualifier ! EXCEPT explicitly specifies the model terms not to use, including all others. These qualifiers will not override the definition of the averaging set.

The fourth step is to choose the weights to use when averaging over dimensions in the hypertable. The default is to simply average over the specified levels but the qualifier !AVERAGE factor weights allows other weights to be specified. !PRESENT and !ASSOCIATE/!ASAVERAGE generate more complicated averaging processes.

The basic prediction process is described in the following example:
yield \(\sim\) site variety !r idv(site).id(variety) at(site).idv(block)
predict variety
puts variety in the classify set, site in the averaging set and block in the ignore set. Consequently, ASReml implicitly forms the site \(\times\) variety hyper-table from model terms site, variety and site.variety but ignoring all terms in at(site).block, and then averages across the sites to produce variety predictions. This prediction will work even if some varieties were not grown at some sites because the site.variety term was fitted as random. If site.variety was fitted as fixed, variety predictions would be non estimable for those varieties that were not grown at every site.

\subsection*{10.3.3 Predict failure}

It is not uncommon for users to get the message
Warning: non-estimable [aliased] cell(s) may be omitted.
because ASReml checks that predictions are of estimable functions in the sense defined by Searle (1971, p160) and are invariant to any constraint method used.

Immediate things to check include whether every level of every fixed factor in the averaging set is present, and whether all cells in every fixed interaction is filled. For example, in the previous example, no variety predictions would be obtained if site was declared as having 4 levels but only three were present in the data. The message is also likely if any fixed model terms are ! IGNOREd. The TABULATE command may be used to see which treatment combinations occur and in what order.

More formally, there are often situations in which the fixed effects design matrix \(\boldsymbol{X}\) is not of full column rank. This aliasing has three main causes.
- linear dependencies among the model terms due to over-parameterisation of the model,
- no data present for some factor combinations so that the corresponding effects cannot be estimated,
- linear dependencies due to other, usually unexpected, structure in the data.

The first type of aliasing is imposed by the parameterisation chosen and can be determined from the model. The second type of aliasing can be detected when setting up the design matrix for parameter estimation (which may require revision of imposed constraints). All types are detected in ASReml during the absorption process used to obtain the predicted values.

ASReml doesn't print predictions of non-estimable functions unless the !PRINTALL qualifier is specified. However, using !PRINTALL is rarely a satisfactory solution. Failure to report predicted values normally means that the predict statement is averaging over some cells of the hyper-table that have no information and therefore cannot be averaged in a meaningful way. Appropriate use of the ! AVERAGE and/or !PRESENT qualifiers will usually resolve the problem. The !PRESENT qualifier enables the construction of means by averaging only the estimable cells of the hyper-table, where this is appropriate.

Table 10.1 is a list of the prediction qualifiers with the following syntax:
- \(f\) is an explanatory variable which is a factor,
- \(t\) is a list of terms in the fitted model,
- \(n\) is an integer number,
- \(v\) is a list of explanatory variables.

\subsection*{10.3 Prediction}

Table 10.1: List of prediction qualifiers
qualifier
action

\section*{Controlling formation of tables}
!ASSOCIATE [ \(v\) facilitates prediction when the levels of one factor are grouped by the levels of another in a hierarchical manner. More details are given below. Two independent associate lists may be specified.
!AVERAGE \(f\)
[weights]
!AVERAGE \(f\)
'file'[,n]

\section*{!ASAVERAGE \(f\) \\ [weights] \\ ! ASAVERAGE \(f\) \\ 'file' [, n]}
!PARALLEL [v]
!PRESENT \(v\)
is used to formally include a variable in the averaging set and to explicitly set the weights for averaging. Variables that only appear in random model terms are not included in the averaging set unless specified with the !AVERAGE, ! ASSOCIATE or !PRESENT qualifiers.

Explicit weights may be supplied directly or from a file. The default is equal weights.
weights can be expressed like \(\{3 * 102 * 1\} / 5\) to represent the sequence 0.2 0.20 .200 .20 .2 . The string inside the curly brace is expanded first and the expression \(n^{*} c\) means \(n\) occurrences of \(c\).
When there are a large number of weights, it may be convenient to prepare them in a file and retrieve them. All values in the file are taken unless ',\(n\) ' is specified in which case they are taken from field/column \(n\).
is used to control averaging over associated factors. The default is to simply average at the base level. Hierarchal averaging is achieved by listing the associated factors to average in \(f\).

Explicit weights may be supplied directly or from a file as for !AVERAGE.
without arguments means all classify variables are expanded in parallel. Otherwise list the variables from the classify set whose levels are to be taken in parallel.
is used when averaging is to be based only on cells with data. \(v\) is a list of variables and may include variables in the classify set. \(v\) may not include variables with an explicit ! AVERAGE qualifier. The variable names in \(v\) may optionally be followed by a list of levels for inclusion if such a list has not been supplied in the specification of the classify set. ASReml works out what combinations are present from the design matrix. It may have trouble with complicated models such as those involving and() terms.

A second !PRESENT qualifier is allowed on a predict statement (but not with !PRWTS). The two lists must not overlap.
is used in conjunction with the first ! PRESENT \(v\) list to specify the weights that ASReml will use for averaging that !PRESENT table. More details are given below.

\subsection*{10.3 Prediction}

Table 10.1: List of prediction qualifiers
qualifier
action

\section*{Controlling inclusion of model terms}
!IGNORE \(t\)
!ONLYUSE \(t\)
!USE \(t\)

Printing
!TURNINGPOINTS \(n\)
causes the prediction to include all fitted model terms not in \(t\).
causes ASReml to set up a prediction model based on the default rules and then removes the terms in \(t\). This might be used to omit the spline Lack of fit term (!IGNORE fac (x)) from predictions as in
```

yield ~ mu x variety !r spl(x) fac(x)
predict x !IGNORE fac(x)

```
which would predict points on the spline curve averaging over variety.
!PLOT [ \(x\) ]
!PRINTALL
!SED
gives the user control of the number of decimal places reported in the table of predicted values where \(n\) is \(0 \ldots 9\). The default is 4 . G15.9 format is used if \(n\) exceeds 9 .
When !VVP or !SED are used, the values are displayed with 6 significant digits unless \(n\) is specified and even; then the values are displayed with 9 significant digits.
instructs ASReml to attempt a plot of the predicted values. This qualifier is only applicable in versions of ASReml linked with the Winteracter Graphics library. If there is no argument, ASReml produces a figure of the predicted values as best it can. The user can modify the appearance by typing <Esc> to expose a menu or with the plot arguments listed in Table 10.2.
instructs ASReml to print the predicted value, even if it is not of an estimable function. By default, ASReml only prints predictions that are of estimable functions.
requests all standard errors of difference be printed. Normally only an average value is printed. Note that the default average SED is actually an SED calculated from the average variance if the predicted values and the average covariance among the predicted values rather than being the average of the individual SED values. However, when !SED is specified, the average of the individual SED values is reported.
requests \(t\)-statistics be printed for all combinations of predicted values.
requests ASReml to scan the predicted values from a fitted line for possible turning points and if found, report them and save them internally in a vector which can be accessed by subsequent parts of the same job using \(\$ T P n\). This was added to facilitate location of putative QTL (Gilmour, 2007).

Table 10.1: List of prediction qualifiers
```

qualifier
action

```
is intended for use with variety trials which will subsequently be combined in a meta analysis. It forms the variance matrix for the predictions, inverts it and writes the predicted variety means with the corresponding diagonal elements of this matrix to the .pvs file. These values are used in some variety testing programs in Australia for a subsequent second stage analysis across many trials (Smith et al., 2001). A data base is used to collect the results from the individual trials and write out the combined data set. The diagonal elements, scaled by the variance which is also reported and held in the data base, are used as weights in the combined analysis.
requests that the variance matrix of predicted values be printed to the .pvs file.

\section*{PLOT graphic control qualifiers}

This functionality was developed and this section was written by Damian Collins.
The !PLOT qualifier produces a graphic of the predictions. Where there is more than one prediction factor, a multi-panel 'trellis' arrangement may be used. Alternatively, one or more factors can be superimposed on the one panel. The data can be added to the plot to assist informal examination of the model fit.

With no plot options, ASReml chooses an arrangement for plotting the predictions by recognising any covariates and noting the size of factors. However, the user is able to customize how the predictions are plotted by either using options to the !PLOT qualifier or by using the graphical interface. The graphical interface is accessed by typing Esc when the figure is displayed.

The !PLOT qualifier has the following options:
Table 10.2: List of predict plot options
action

\section*{Lines and data}
^addData superimposes the raw data.

\subsection*{10.3 Prediction}

Table 10.2: List of predict plot options
option
action
\begin{tabular}{|c|c|}
\hline addlabels factors & superimposes the raw data with the data points labelled using the given factors (which must not be prediction factors). This option may be useful to identify individual data points on the graph - for instance, potential outliers - or alternatively, to identify groups of data points (e.g. all data points in the same stratum). \\
\hline ^addlines factors & superimposes the raw data with the data points joined using the given factors which must not be prediction factors. This option may be useful for repeated measures data. \\
\hline \({ }^{\text {n }}\) noSEs & specifies that no error bars should be plotted (by default, they are plotted) \\
\hline \({ }^{\text {s semult }} r\) & specifies the multiplier of the SE used for creating error bars (default=1.0) \\
\hline ^joinmeans & specifies that the predicted values should be joined by lines (by default, they are only joined if the x -axis variable is numeric) \\
\hline
\end{tabular}

\section*{Predictions involving two or more factors}

If these arguments are used, all prediction factors (except for those specified with only one prediction level) must be listed once and only once, otherwise these arguments are ignored.
xaxis factor
specifies the prediction factor to be plotted on the x -axis
superimpose
factors
^condition factors
specifies the conditioning factors which define the panels. These should be listed in the order that they will be used.

\section*{Layout}
```

goto n
^saveplot filename
layout rows cols
`bycols `blankpanels n
blankpanels n

```
extrablanks \(n\) and
extraspan \(p\)
specifies the page to start at, for multi-page predictions.
specifies the name of the file to save the plot to.
specifies the panel layout on each page
specifies that the panels be arranged by columns (default is by rows)
specifies that each page contains n blank panels. This sub-option can only be used in combination with the layout sub-option.
extraspan \(p\)
specifies that an additional \(n\) blank panels be used every \(p\) pages These can only be used with the layout sub-option.

Improving the graphical appearance (and readability)
\begin{tabular}{|c|c|}
\hline labcharsize \(n\) & specifies the relative size of the data points/labels (default=0.4) \\
\hline panelcharsize \(n\) & specifies the relative size of the labels used for the panels (default=1.0) \\
\hline *vertxlab & specifies that vertical annotation be used on the x -axis (default is horizontal). \\
\hline abbrdlab \(n\) & specifies that the labels used for the data be abbreviated to \(n\) characters. \\
\hline *abbrxlab \(n\) & specifies that the labels used for the x -axis annotation be appreviated to \(n\) characters. \\
\hline
\end{tabular}

\subsection*{10.3 Prediction}

Table 10.2: List of predict plot options

\footnotetext{
option
action
^abbrslab \(n\) specifies that the labels used for superimposed factors be abbreviated to \(n\) characters.
}

\subsection*{10.3.4 Associated factors}
!ASSOCIATE factors facilitates prediction when the levels of one factor group or classify the levels of another, especially when there are many levels. factors is the list of factors in the model which have this hierarchical relationship. Typical examples are individually named lines grouped into families, usually with unequal numbers of lines per family, or trials conducted at locations within regions.

Declaring factors as associated allows ASReml to combine the levels of the factors appropriately. For example, when predicting a trial mean, to add the effect of the location and region where the trial was conducted. When identifying which levels are associated, ASReml checks that the association is strictly hierarchal, tree-like. That is, each trial is associated with one location and each location is associated with only one region. If a level code is missing for one component, it must be missing for all.

Averaging of associated factors will generally give differing results depending on the order in which the averaging is performed. We explore this with the following extended example. Consider the mean yields from 15 trials classified by region and location in Table 10.4.

Table 10.3: Trials classified by region and location
\begin{tabular}{lcccccccc}
\hline & \multicolumn{8}{c}{ location } \\
Region & L1 & L2 & L3 & L4 & L5 & L6 & L7 & L8 \\
\hline R1 & T1, T2 & T3, T4, T5 & T6 & & & & & \\
R2 & & & & T7, T8 & T9, T10, T11 & T12, T13 & T14 & T15 \\
\hline
\end{tabular}

Table 10.4: Trial means
\begin{tabular}{ccccccccccccccc}
\hline T1 & T2 & T3 & T4 & T5 & T6 & T7 & T8 & T9 & T10 & T11 & T12 & T13 & T14 & T15 \\
\hline 10 & 12 & 11 & 12 & 13 & 13 & 11 & 13 & 11 & 12 & 13 & 10 & 12 & 10 & 10 \\
\hline
\end{tabular}

Assuming a simplified linear model yield \(\sim\) mu region location trial the predict statement predict trial ! ASSOCIATE region location trial will reconstruct the 15 trial means from the fitted mu, region, location and trial effects.

Given these trial means, it is fairly natural to form location means by averaging the trials in each location to get the location means in Table 10.5.

Table 10.5: Location means
\begin{tabular}{cccccccc}
\hline L1 & L2 & L3 & L4 & L5 & L6 & L7 & L8 \\
\hline 11 & 12 & 13 & 12 & 12 & 11 & 10 & 10 \\
\hline
\end{tabular}

These are given by
predict location !ASSOCIATE region location trial !ASAVERAGE trial
or equivalently
predict location !ASSOCIATE region location trial
since the default is to average the base associate factor (trial) within the associated classify factor (location).

By contrast, by specifying
predict location
or equivalently
predict location !AVERAGE region ! AVERAGE trial
ASReml would add the average of all the trial effects and the average of the region effects into all of the location means which is not appropriate. With ! ASSOCIATE, it knows which trials to average (and which region effects to include) to form each location mean. That is, ASReml knows how to construct the trial means including the appropriate region and location effects, and which trials means to then average to form the location table.

However, for region means, we have a choice. We can average the trial means in Table 10.4 according to region obtaining region means of 11.83 and 11.33 , or we can average the location means in Table 10.5 to get region means of 12 and 11.

The former is the default in ASReml produced by
predict region ! ASSOCIATE region location trial ! ASAVERAGE trial
or equivalently by
predict region !ASSOCIATE region location trial
Again, this is base averaging.
By contrast,
predict region ! ASSOC region location trial !ASAVE location trial
(or predict region ! ASSOC region location trial ! ASAVE location)
produces sequential averaging giving region means of 12 and 11 respectively.
Similarly, an overall sequential mean of 11.5 is given by
predict mu ! ASSOC region location trial !ASAVE region location
while predict mu ! ASSOC region location trial ! ASAVE region
gives a value of 11.58 being the average of region means 11.83 and 11.33 obtained by averaging trials within regions from Table 10.4, and predict mu !ASSOCIATE region location trial !ASAVE location predicts mu as 11.38, the average of the 8 location means in Table 10.5.

\section*{Further discussion of associated factors}

The user may specify their own weights, using file input if necessary. Thus predict region ... ! ASAVERAGE location \(\left\{\begin{array}{lllllll}1 & 2 & 3\end{array}\right\} / 6\left\{\begin{array}{llll}1 & 1 & 1 & 2\end{array} 1\right\} / 6\) would give region predictions of 11.67 and 10.84 respectively derived from the location predictions in Table 10.5. Note that because location is nested in region, the location weights should sum to 1.0 within levels of region when forming region means. The !AVERAGE (!ASAVERAGE) qualifier allows the weights to be read from a file which the user can create elsewhere. Thus the code !asaverage trial 'Tweight.csv', 2 will read the weights from the second field of file Tweight.csv. The user must ensure the weights are in the coding order ASReml uses (trial order in this instance, given in the .sln file or by using the TABULATE command).

It was noted that it is the base ! ASSOCIATE factor that is formally included in the hypertable. If the lowest stratum is random, it may be appropriate to ignore it. Omitting it from
the ! ASSOCIATE list will allow it to reenter the Ignore set. Specifying it with the ! IGNORE qualifier will exclude its effects from the prediction but not ignore the structural information implied by the association.

Normally it is not necessary for any model term to involve more than 1 of the associated factors. One exception is if an interaction is required so that the variance can differ between sections. For example, fitting the terms at(region).trial as random effects would allow the trials in region 1 to have a different variance component to those in region 2. Prediction in these cases is more complicated and has only been implemented for this specific case and the analagous region.trial case. The associated factors must occur together in this order for the prediction to give correct answers.

The ! ASSOCIATE effect (with base averaging) can usually be achieved with the !PRESENT qualifier except when the factors have many levels so that the product of levels exceeds 2147 000000 ; it fails in this case because the KEY for identifying the cells present is a simple combination of the levels and is stored as a normal (32bit) integer. However, ! ASSOCIATE is preferred because it formally checks the association structure as well as allowing sequential averaging.

Two ! ASSOCIATE clauses may be specified for example
PRED entry !ASSOC family entry !ASSOC reg loc trial !ASAVE reg loc.
Only one member of an ! ASSOCIATE list may also appear in a ! PRESENT list. If one member appears in the classify set, only that member may appear in the !PRESENT list. For example yield \(\sim\) region !r idv(region).id(family) idv(entry)
PREDICT entry !ASSOCIATE family entry !PRESENT entry region.
Association averaging is used to form the cells in the PRESENT table and PRESENT averaging is then applied.

\subsection*{10.3.5 Complicated weighting with !PRESENT}

Generally, when forming a prediction table, it is necessary to average over (or ignore) some dimensions of the hyper table. By default, ASReml uses equal weights ( \(1 / f\) for a factor with \(f\) levels). More complicated weighting is achieved by using the ! AVERAGE qualifier to set specific (unequal) weights for each level of a factor. However, sometimes the weights need to be defined with respect to two or more factors. The simplest case is when there are missing cells and weighting is equal for those cells in a multiway table that are present; achieved by using the !PRESENT qualifier. This is further generalized by allowing the user to supply the weights to be used by the ! PRESENT machinery via the !PRWTS qualifier.

The user specifies the factors in the table of weights with the !PRESENT statement and then gives the table of weights using the !PRWTS qualifier. There may only be one !PRESENT qualifier on the predict line when !PRWTS is specified. The order of factors in the tables of weights must correspond to the order in the !PRESENT list with later factors nested within preceding factors. The weights may be given in a separate file if a filename (in quotes) is given as the argument to !PRWTS. Check the output to ensure that the values in the tables

\subsection*{10.3 Prediction}
of weights are applied in the correct order. ASReml may transpose the table of weights to match the order it needs for processing.

When weights are supplied in a separate file, two layouts are allowed. The default is to read all values in the file, regardless of layout. Otherwise, the weights must appear a single column/field (one weight per line) where the field is specified by appending , \(c\) to the filename.

Consider a rather complicated example from a rotation experiment conducted over several years. One analysis was of the daily live weight gain per hectare of the sheep grazing the plots. There were periods when no sheep grazed. Different flocks grazed in the different years. Daily liveweight gain was assessed between 5 and 8 times in the various years. To obtain a measure of total productivity in terms of sheep liveweight, we need to weight the daily gain by the number of sheep grazing days per month. The production for each year is given by
```

predict year 1 crop 1 pasture lime !AVE month 56 55 56 53 57 63 6*0
predict year 2 crop 1 pasture lime !AVE month 36 0 0 53 23 24 54 54 43 35 0 0
predict year 3 crop 1 pasture lime !AVE month 70 0 21 17 0 0 0 70 0 0 53 0
predict year 4 crop 1 pasture lime !AVE month 53 56 22 92 19 44 0 0 36 0 0 49
predict year 5 crop 1 pasture lime !AVE month 0 22 0 53 70 22 0 51 16 51 0 0

```
but to average over years as well, we need one of the following predict statements:
```

predict crop 1 pasture lime !PRES year month ,
!PRWTS { 56 55 56 53 57 63 0 0 0 0 0 0,
36 0}00532324545443 35 0 0,
70 0 21 17 0 0 0 70 0 0 53 0,
53 56 22 92 19 44 0}0036 0 0 49
0 22 0 53 70 22 0 51 16 51 0 0}/5
predict crop 1 pasture lime !PRES month year ,
!PRWTS { 56 36 70 53 0,
55 0 0 56 22,
56 0 21 22 0,
53 53 17 92 53,
57 23 0 19 70,
63 24 0 44 22,
0 54 0 0 0,
0 54 70 0 51,
043 0 36 16,
0 35 0 0 51,
0 0 53 0 0,
0 0 0 49 0}/5
predict crop 1 pasture lime !PRES year month !PRWTS 'YMprwts.txt'

```
where YMprwts.txt contains
```

11.2 11.0 11.2 10.6 11.4 12.6 0.0 0.0 0.0 0.0 0.0 0.0
7.2 0.0 0.0 10.6 4.6 4.8 10.8 10.8 8.6 7.0 0.0
14. 0.0 4.2 3.4 0.0}00.
10.6 11.2 4.4 18.4

```

We have presented both sets of predict statements to show how the weights were derived and presented. Notice that the order in !PRESENT year month implies that the weight coefficients are presented in standard order with the levels for months cycling within levels for years. There is a check which reports if non zero weights are associated with cells that have no data. The weights are reported in the .pvs file. !PRESENT counts are reported in the .res file.

\subsection*{10.3.6 Examples}

Examples are as follows:
```

yield ~ mu variety !r idv(repl)
predict variety

```
is used to predict variety means in the NIN field trial analysis. Random repl is ignored in the prediction.
```

yield ~ mu x variety !r idv(repl)
predict variety

```
predicts variety means at the average of x ignoring random repl.
```

yield ~ mu x variety repl
predict variety x 2

```
forms the hyper-table based on variety and repl at the covariate value of 2 and then averages across repl to produce variety predictions.
```

GFW Fdiam ~ Trait Trait.Year !r idv(Trait).id(Team)
predict Trait Team

```
forms the hyper-table for each trait based on Year and Team with each linear combination in each cell of the hyper-table for each trait using Team and Year effects. Team predictions are produced by averaging over years.
```

yield ~ variety !r idv(site).id(variety)
predict variety

```
will ignore the site.variety term in forming the predictions while
predict variety !AVERAGE site
forms the hyper-table based on site and variety with each linear combination in each cell using variety and site.variety effects and then forms averages across sites to produce variety predictions.
```

yield ~ site variety !r idv(site).id(variety) at(site).idv(block)
predict variety

```
puts variety in the classify set, site in the averaging set and block in the ignore set. Consequently, it forms the site \(\times\) variety hyper-table from model terms site, variety and site.variety but ignoring all terms in at(site).block, and then forms averages across

\subsection*{10.3 Prediction}
sites to produce variety predictions.

\subsection*{10.3.7 New R4 Prediction using two-way interaction effects}

In some cases we wish to calculate from two way interaction effects, \(b c_{i j}\) say, effects for one of the factors, \(B\) say, that are a weighted sum averaged over the \(c\) levels of \(C\), ie. \(b_{i}=\sum_{j=1}^{c} b c_{i j} w_{j}\).
TPREDICT C ! AVE B weights ! ONLYUSE fun(B).fun(C)
allows this to be produced more computationally efficiently than it would be using PREDICT. For example,
```

TPREDICT Animal !AVE Trait 2.1 1.2 -7.4 !ONLYUSE us(Trait).nrm(Animal)

```

Part of the motivation for this is the calculation of selection indices. The index coefficients are typically derived as \(w=a^{\prime} G_{o m} G_{m m}^{-1}\) where \(G_{m m}\) is the variance matrix for the measured traits (corresponding to C in the example), \(G_{o m}\) is the genetic covariance matrix between the objective traits and the measured traits, and \(a\) is the vector of economic values for the objective traits. The results are given in a .sli (selection index) file. This directive should be placed after the model specification.

\section*{11 Command file: Running the job}

\subsection*{11.1 Introduction}

The command line, its options and arguments are discussed in this chapter. Command line options enable more workspace to be accessed to run the job, control some graphics output and control advanced processing options. Command line arguments are substituted into the job at run time.

As Windows likes to hide the command line, most command line options can be set on an optional initial line of the .as file we call the top job control line to distinguish it from the other job control lines discussed in Chapter 6. If the first line of the .as file contains a qualifier other than !DOPATH, it is interpreted as setting command line options and the Title is taken as the next line.

\subsection*{11.2 The command line}

\subsection*{11.2.1 Normal run}

The basic command to run ASReml is
[path] ASReml basename[.as[c]]
- path provides the path to the ASReml program (usually called asreml. exe in a PC environment). In a UNIX environment, ASReml is usually run through a shell script called ASReml.
- if the ASReml program is in the search path then path is not required and the word ASReml will suffice; for example

ASReml nin89.as
will run the NIN analysis (assuming it is in the current working folder),
- if asreml.exe(ASReml) is not in the search path then path is required, for example, if asreml.exe is in the usual place then
C: \Program Files \(\backslash\) ASReml3 \(\backslash\) bin \(\backslash\) Asreml nin89.as

\subsection*{11.2 The command line}

> will run nin89.as,
- ASReml invokes the ASReml program,
- basename is the name of the .as[c] command file.

The basic command line can be extended with options and arguments to
[path] ASReml [options] basename[.as[c]] [arguments]
- options is a string preceded by a - (minus) sign. Its components control several operations (batch, graphic, workspace, ...) at run time; for example, the command line
```

ASReml -w128 rat.as

```
tells ASReml to run the job rat. as with workspace allocation of 128 mb ,
- arguments provide a mechanism (mostly for advanced users) to modify a job at run time; for example, the command line

ASReml rat.as alpha beta
tells ASReml to process the job in rat. as as if it read alpha wherever \(\$ 1\) appears in the file rat.as, beta wherever \(\$ 2\) appears and 0 wherever \(\$ 3\) appears (see below).

\subsection*{11.2.2 Processing a .pin file}

If the filename argument is a .pin file, (see Chapter 13), then ASReml processes it. If the pinfile basename differs from the basename of the output files it is processing, then the basename of the output files must be specified with the P option letter. Thus

ASReml border.pin
will perform the pinfile calculations defined in border.pin on the results in files border. asr and border.vvp.

ASReml -Pborderwwt border.pin
will perform the pinfile calculations defined in border. pin on the results in files borderwwt. asr and borderwwt.vvp.

\subsection*{11.2.3 Forming a job template from a data file}

The facility to generate a template .as file was introduced in section 3.4.1. Normally, the name of a . as command file is specified on the command line. If a . as file does not exist and a file with file extension .asd, .csv, .dat, .gsh, .txt or .xls is specified, ASReml assumes the data file has field labels in the first row and generates a .as file template. First, it seeks to convert the .gsh (Genstat) or .xls (Excel, see page 42) file to .csv format. In generating

\subsection*{11.3 Command line options}
the .as template, ASReml takes the first line of the .csv (or other) file as providing column headings, and generates field definition lines from them. If some labels have ! appended, these are defined as factors, otherwise ASReml attempts to identify factors from the field contents. The template needs further editing before it is ready to run but does have the field names copied across.

\subsection*{11.3 Command line options}

Command line options and arguments may be specified on the command line or on the top job control line. This is an optional first line of the .as file which sets command line options and arguments from within the job. If the first line of the .as file contains a qualifier other than ! DOPATH, it is interpreted as setting command line options and the Title is taken as the next line.

The option string actually used by ASReml is the combination of what is on the command line and what is on the job control line, with options set in both places taking values from the command line. Arguments on the top job control line are ignored if there are arguments on the command line. This section defines the options. Arguments are discussed in detail in a following section.

Command line options are not case sensitive and are combined in a single string preceded by a - (minus) sign, for example -LNW128

The options can be set on the command line or on the first line of the job either as a concatenated string in the same format as for the command line, or as a list of qualifiers. For example, the command line

ASReml -h22r jobname 123
could be replaced with
ASReml jobname
if the first line of jobname.as was either
!-h22r 123
or
!HARDCOPY !EPS !RENAME !ARGS 123

Table 11.1 presents the command line options with brief descriptions. It also gives the name of the equivalent qualifier used on the top job control line. Detailed descriptions follow.

\subsection*{11.3 Command line options}

Table 11.1: Command line options
\begin{tabular}{llll}
\hline option & qualifier & type & action \\
\hline \multicolumn{2}{l}{ Frequently used command line options } & \\
C & !CONTINUE & job control & \begin{tabular}{l} 
continue iterations using previous estimates as initial \\
values
\end{tabular} \\
F & !FINAL & job control & \begin{tabular}{l} 
continue for one more iteration using previous esti- \\
mates as initial values
\end{tabular} \\
L & !LOGFILE & screen output & \begin{tabular}{l} 
copy screen output to basename. asl
\end{tabular} \\
N & !NOGRAPHS & graphics & suppress interactive graphics \\
W \(w\) & !WORKSPACE \(w\) & workspace & set workspace size to \(w\) Mbyte
\end{tabular}

Other command line options
\begin{tabular}{|c|c|c|c|}
\hline & ! ARGS \(a\) & job control & to set arguments \((a)\) in job rather than on command line \\
\hline A & ! ASK & job control & prompt for options and arguments \\
\hline Bb & ! BRIEF \(b\) & output control & reduce output to .asr file \\
\hline D & ! DEBUG & debug & invoke debug mode \\
\hline E & !DEBUG 2 & debug & invoke extended debug mode \\
\hline Gg & ! GRAPHICS \(g\) & graphics & set interactive graphics device \\
\hline Hg & ! HARDCOPY \(g\) & graphics & set interactive graphics device, graphics screens not displayed \\
\hline I & ! INTERACTIVE & graphics & display graphics screen \\
\hline 0 & ! ONERUN & job control & override rerunning requested by !RENAME \\
\hline & ! OUTFOLDER & output control & changes output folder \\
\hline P & NA & post-processing & calculation of functions of variance components \\
\hline Q & ! QUIET & graphics & suppress screen output \\
\hline Rr & ! RENAME & job control & repeat run for each argument renaming output filenames \\
\hline Ss & NA & workspace & set workspace size \\
\hline \(\mathrm{Y} v\) & ! YVAR \(v\) & job control & over-ride \(y\)-variate specified in the command file with variate number \(v\) \\
\hline Z & NA & license & reports current license details \\
\hline X & ! XML & output control & requests that the main output from the .asr, .pvs and. \(\operatorname{sln}\) files be also written in the. xml file. \\
\hline
\end{tabular}

\subsection*{11.3 Command line options}

\subsection*{11.3.1 Prompt for arguments (A)}

A (!ASK) makes it easier to specify command line options in Windows Explorer. One of the options available when right clicking a .as file, invokes ASReml with this option. ASReml then prompts for the options and arguments, allowing these to be set interactively at run time. With !ASK on the top job control line, it is assumed that no other qualifiers are set on the line. For example, a response of
```

-h22r 1 2 3 would be equivalent to

```
ASReml -h22r basename 123

\subsection*{11.3.2 Output control (B, !OUTFOLDER, ! XML)}
\(\mathrm{B}[b]\) (!BRIEF [b) suppresses some of the information written to the .asr file. The data summary and regression coefficient estimates are suppressed by the options B, B1 or B2. This option should not be used for initial runs of a job before you have confirmed (by checking the data summary) that ASReml has read the data as you intended. Use B2 to also have the predicted values written to the .asr file instead of the .pvs file. Use B-1 to get BLUE estimates reported in .asr file.
! OUTFOLDER [path] allows most of the output files to be written to a folder other than the working folder. This qualifier must be placed on the top command line as it needs to be processed before any output files are opened. Most files produced by ASReml have a filename structure
<basename><subname>.<extension>
where <subname> is a command line argument value. If !OUTFOLDER is specified without path, the output filename pattern becomes
\(<\) basename \(><\) subname \(>/<\) basename \(>\).<extension \(>\)
If path is specified, the output filename pattern becomes
\(<\) path \(>/<\) basename \(><\) subname \(>\).<extension \(>\)
There are a few files written by ASReml that do not follow this naming pattern, for example, ainverse.bin and asrdata.bin. These remain unchanged, that is, they are not written to the output folder.
! XML requests that the primary tables reported in the .asr file and key output from .pvs and .sln files are written to a . xml file in xml format. The output is presented in the order of computation. The first block written is a .asr block and includes start and finish times, the data summary, the iteration sequence summary and information criteria, then from the .pvs file the tables and associated information, then the summary of estimated variance structure parameters from the .asr file, then information from the .sln file, and then finally, the Wald F statistics and completion information from the .asr file. The process is repeated for each cycle of analysis. The intended use of this file is by programs written to parse ASReml output. For further details, including the status of intended future developments, please contact support@vsni.co.uk.

\subsection*{11.3 Command line options}

\subsection*{11.3.3 Debug command line options (D, E)}

D and E (!DEBUG, !DEBUG 2) invoke debug mode and increase the information written to the screen or .asl file. This information is not useful to most users. On Unix systems, if ASReml is crashing use the system script command to capture the screen output rather than using the L option, as the .asl file is not properly closed after a crash.

\subsection*{11.3.4 Graphics command line options (G, H, I, N, Q)}

Graphics are produced by ASReml on some platforms (e.g. PC and Linux) using the Winteracter graphics library.
The I (!INTERACTIVE) option permits the variogram and residual graphics to be displayed. This is the default unless the L option is specified.
The N (! NOGRAPHICS) option prevents any graphics from being displayed. This is the default when the L option is specified.
The \(\mathrm{G} g\) (! GRAPHICS \(g\) ) option sets the file type for hard copy versions of the graphics. Hard copy is formed for all the graphics that are displayed.
H [g] (! HARDCOPY \(g\) ) replaces the G option when graphics are to be written to file but not displayed on the screen. The H may be followed by a format code e.g. H22 for .eps.
Q (!QUIET) is used when running under the control of ASReml-W to suppress any POPUPs/ PAUSES from ASReml.

ASReml writes the graphics to files whose names are built up as
\(\langle\) basename \(\rangle[<\) args \(\rangle]<\) type \(\rangle[<\) pass \(\rangle][<\) section \(\rangle] .<\) ext \(>\) where square parentheses indicate elements that might be omitted, <basename \(>\) is the name portion of the .as file, \(<\operatorname{args}\rangle\) is any argument strings built into the output names by use of the ! RENAME qualifier, <type> indicates the contents of the figure (as given in the following table), <pass> is inserted when the job is repeated (!RENAME or !CYCLE) to ensure filenames are unique across repeats, <section> is inserted to distinquish files produced from different sections of data (for example from multisite spatial analysis) and \(<e x t>\) indicates the file graphics format.
\[
<\text { type }>\quad \text { file contents }
\]
\begin{tabular}{ll} 
R \(_{-}\) & marginal means of residuals from spatial analysis of a section \\
V \(_{-}\) & variogram of residuals from spatial analysis for a section \\
S_ \(_{-}\) & residuals in field plan for a section \\
H_ \(_{-}\) & histogram of residuals for a section \\
_RvE & residuals plotted against expected values \\
XYGi & figure produced by !X, ! Y and !G qualifiers \\
PV_i & Predicted values plotted for PREDICT directive \(i\)
\end{tabular}

The graphics file format is specified by following the G or H option by a number \(g\), or specifying the appropriate qualifier on the top job control line, as follows:
\begin{tabular}{rlll}
\(g\) & qualifier & description & \(<\) ext \(>\) \\
\hline & & & \\
1 & ! HPGL & HP-GL & pgl \\
2 & !PS & Postscript (default) & ps \\
6 & !BMP & BMP & bmp \\
10 & !WPM & Windows Print Manager & \\
11 & !WMF & Windows Meta File & wmf \\
12 & ! HPGL 2 & HP-GL2 & hgl \\
21 & !PNG & PNG & png \\
22 & !EPS & EncapsulatedPostScript & eps \\
\hline \hline
\end{tabular}

\subsection*{11.3.5 Job control command line options (C, F, O, R)}

C (!CONTINUE) indicates that the job is to continue iterating from the values in the .rsv file. This is equivalent to setting !CONTINUE on the datafile line, see Table 5.4, page 66 for details.

F (!FINAL) indicates that the job is to continue for one more iteration from the values in the .rsv file. This is useful when using predict, see Chapter 10.
O (!ONERUN) is used with the R option to make ASReml perform a single analysis when the \(R\) option would otherwise attempt multiple analyses. The \(R\) option then builds some arguments into the output file name while other arguments are not. For example
ASReml -nor2 mabphen 2 TWT out(621) out (929)
results in one run with output files mabphen2_TWT.*.
\(\mathrm{R}[r]\) (!RENAME \([r]\) ) is used in conjunction with at least \(r\) argument(s) and does two things: it modifies the output filename to include the first \(r\) arguments so the output is identified by these arguments, and, if there are more than \(r\) arguments, the job is rerun moving the extra arguments up to position \(r\) (unless ! ONERUN ( 0 ) is also set). If \(r\) is not specified, it is taken as 1.

For example
ASReml -r2 job wwt gfw fd fat
is equivalent to running three jobs:
ASReml -r2 job wwt gfw \(\rightarrow\) jobwwt_gfw.asr
ASReml -r2 job wwt fd \(\rightarrow\) jobwwt_fd.asr
ASReml -r2 job wwt fat \(\rightarrow\) jobwwt_fat.asr
Yy (!YVAR \(y\) ) overrides the value of response, the variate to be analysed (see Section 6.2) with the value \(y\), where \(y\) is the number of the data field containing the trait to be analysed. This facilitates analysis of several traits under the same model. The value of \(y\) is appended to the basename so that output files are not overwritten when the next trait is analysed.

\subsection*{11.3.6 Workspace command line options (S, W)}

\subsection*{11.4 Advanced processing arguments}

The workspace requirements depend on problem size and may be quite large. On 32bit computers the maximum is 2000Mbyte under Linux, 1600 Mbyte under Windows. On 64bit systems, the maximum is 32 Gbyte but may be less depending on the machine configuration. The default allocation is 32 Mbyte ( 4 million double precision words). An increased workspace allocation may be requested on the command line with the \(\mathrm{W} m\) option.

Wm (!WORKSPACE m) sets the initial size of the workspace in Mbytes. For example W1600 requests 1600 Mbytes of workspace, the maximum typically available under Windows. W2000 is the maximum available on 32 bit Unix(Linux) systems. On 64bit systems, the argument, if less than 33 , is taken as Gbyte.

If your system cannot provide the requested workspace, the request will be diminished until it can be satisfied. On multi-user systems, do not unnecessarily request the maximum or other users may complain.

Having started with an initial allocation, if ASReml realises more space is required as it is running, it will attempt to restart the job with increased workspace. If the system has already allocated all available memory the job will stop.

\subsection*{11.3.7 Examples}
\begin{tabular}{ll} 
ASReml code & action \\
\hline asreml -LW64 rat.as & \begin{tabular}{l} 
increase workspace to 64 Mbyte, send screen output to rat.asl and sup- \\
press interactive graphics
\end{tabular} \\
asreml -IL rat.as & \begin{tabular}{l} 
send screen output to rat.asl but display interactive graphics
\end{tabular} \\
asreml -N rat.as & allow screen output but suppress interactive graphics \\
asreml -ILW512 & \begin{tabular}{l} 
increase workspace to 512 Mbyte, send screen output to rat.asl but \\
display interactive graphics
\end{tabular} \\
rat.as & \begin{tabular}{l} 
runs coop.as twice using 1Gbyte workspace and writing results to \\
asreml -rw1 coopwwt.as and coopywt.as and substituting wwt and ywt for \(\$ 1\) in the \\
ywt
\end{tabular}
\end{tabular}

\subsection*{11.4 Advanced processing arguments}

\subsection*{11.4.1 Standard use of arguments}

Command line arguments are intended to facilitate the running of a sequence of jobs that require small changes to the command file between runs. The output file name is modified by the use of this feature if the -R option is specified. This use is demonstrated in the Coopworth example of Section 16.10.

\subsection*{11.4 Advanced processing arguments}

Command line arguments are strings listed on the command line after basename, the command file name, or specified on the top job control line after the ! ARGS qualifier. These strings are inserted into the command file at run time. When the input routine finds a \(\$ n\) in the command file it substitutes the \(n\)th argument (string). \(n\) may take the values \(1 \ldots 9\) to indicate up to 9 strings after the command file name. If the argument has 1 character, a trailing blank is attached to the character and inserted into the command file. If no argument exists, a zero is inserted. For example,
asreml rat.as alpha beta
tells ASReml to process the job in rat.as as if it read alpha wherever \(\$ 1\) appears in the command file, beta wherever \(\$ 2\) appears and 0 wherever \(\$ 3\) appears.

Table 11.2: The use of arguments in ASReml
\begin{tabular}{lll}
\hline in command file & on command line & becomes in ASReml run \\
\hline abc\$1def & no argument & abc0 def \\
abc\$1def & with argument X & abcX def \\
abc\$1def & with argument XY & abcXYdef \\
abc\$1def & with argument XYZ & abcXYZdef \\
abc\$1 def & with argument XX & abcXX def \\
abc\$1 def & with argument XXX & abcXXX def \\
\begin{tabular}{ll} 
abc\$1 def \\
\((\) multiple spaces \()\) & with argument XXX
\end{tabular} & abcXXX def
\end{tabular}

\subsection*{11.4.2 Prompting for input}

Another way to gain some interactive control of a job in the PC environment is to insert !? \(\{\) text \(\}\) in the .as file where you want to specify the rest of the line at run time. ASReml prompts with text and waits for a response which is used to compete the line. The !? qualifier may be used anywhere in the job and the line is modified from that point.

Warning Unfortunately the prompt may not appear on the top screen under some windows operating systems in which case it may not be obvious that ASReml is waiting for a keyboard response.

\subsection*{11.4 Advanced processing arguments}

\subsection*{11.4.3 Paths and Loops}

ASReml was designed to analyse just one model per run. However, the analysis of a data set typically requires many runs, fitting different models to different traits. It is often convenient to have all these runs coded into a single .as file and control the details from the command line (or top job control line) using arguments. The highlevel qualifiers !CYCLE and DOPATH enable multiple analyses to be defined and run in one execution of ASReml.

Table 11.3: High level qualifiers
```

qualifier action
!ASSIGN list
New R4 An !ASSIGN string qualifier has been added to extend coding options. It is a high level qualifier command which may appear anywhere in the job. Each occurrence of !ASSIGN must start on its own input line. The syntax is
! ASSIGN name string
or
! ASSIGN name !< string !>
and the defined string is substituted into the job where \$name appears. string is the rest of the line and may include blanks. If $!<!>$ encloses string, string may extend over several lines, which are concatenated.
For example ! ASSIGN TVS xfa1 (Treat)
... \$TVS.geno ...
is interpreted as
... xfa1(Treat).geno ...

```

\section*{Restrictions:}
- a maximum of 50 assign strings may be defined.
- the combined length of all strings is 5000 characters.
- name may have up to 8 characters but should not begin with a number (see command line arguments).
- dollar substitution occurs before most other high level actions. ASSIGN strings and commandline arguments may substitute into a !CYCLE line.
- I, J, K and L are reserved as names referring to items in the !CYCLE list and should therefore not be used as names of an ASSIGN string.

\subsection*{11.4 Advanced processing arguments}

\section*{High level qualifiers}
action
!CYCLE [!SAMEDATA] list
!DOPATH \(n\)
!DOPART \(n\)
is a mechanism whereby ASReml can loop through a series of jobs. The !CYCLE has a qualifier !SAMEDATA that tells ASReml to use the same data for all cycles, ie. the data file is only read on the first cycle, and is kept in memory for later cycles. The !CYCLE qualifier must appear on its own line. list is a series of values which are substituted into the job wherever the \$I string appears. The list may spread over several lines if each incomplete line ends with a COMMA. A series of sequential integer values can be given in the form \(i: j\) (no embedded spaces). The output from the set of runs is concatenated into a single set of files, but the output written to the .asr file is slightly abbreviated after the first cycle, by suppressing the data summary and fixed effect solutions that might otherwise appear (see !BRIEF; the !BRIEF qualifier is set after the first cycle).

For example
!CYCLE 0.40 .50 .6
200 mat2 1.9 \$I ! GPF
would result in three runs and the results would be appended to a single file. Putting ! SAMEDATA on the (leading) ! CYCLE line makes ASReml read the data (and .grr file) file in the first CYCLE and hold it in memory for use in subsequent cycles. This is advantageous when the data/.grr file is large and there are many cycles to execute where the model changes, but the data/.grr file doesn't.

The !CYCLE mechanism acts as an inner loop when used with ! RENAME ! ARG. As an example, the ! RENAME ! ARG arguments might list a set of traits, and the ! CYCLE arguments sequentially test a set of markers.
A cycle string may consist of up to 4 substrings, separated by a semicolon and referenced as \(\$ \mathrm{I} \$ \mathrm{~J}\) \$K and \(\$ \mathrm{~L}\) respectively. For example
!CYCLE Y1;X1 Y2;X2
\$I ~ mu \$J
When cycling is active, an extra line is written to the .asr file containing some details of the cycle in a form which can be extracted to form an analysis summary by searching for LogL:. A heading for this extra line is written in the first cycle. For example
LogL: LogL Residual NEDF NIT Cycle Text
LogL: -208.97 0.703148 58761466 "LogL Converged"
The LogL: line with the highest LogL value is repeated at the end of the .asr file.
!DOPATH with !PATH/!PART statements allows several analyses to be coded in one job file and run selectively without having to edit the .as file between runs. Both spellings can be used interchangably. Which particular lines in the .as file are honoured is controlled by the argument \(n\) of the !DOPATH qualifier in conjunction with !PATH (or !PART) statements.

\subsection*{11.4 Advanced processing arguments}

\section*{High level qualifiers}
qualifier
action
!FOR forlist !DO command

\subsection*{11.4 Advanced processing arguments}

High level qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & action \\
\hline ! 1 F string1 == string2 text & \begin{tabular}{l}
New R4 One form of the IF statement is \\
! IF string1 == string2 !ASSIGN M1 brt DamAge which makes the !ASSIGN statement active if string1 is the same as string2. Note that there need to be spaces before and after \(==\) to avoid confusion with the strings. This has been used when performing a large number of bivariate analyses with trait specific fixed effects being fitted. So \\
! IF \$1 == wwt !ASSIGN M1 brt DamAge \\
!IF \(\$ 1\) == ywt !ASSIGN M1 brt \\
!IF \(\$ 1\) == fwt ! ASSIGN M1 DamAge \\
!IF \(\$ 2\) == wwt ! ASSIGN M2 brt DamAge \\
!IF \(\$ 2\) == ywt !ASSIGN M2 brt \\
!IF \$2 == fwt !ASSIGN M2 DamAge \\
\$1 \$2 ~ Trait at(Trait,1).(\$M1) at(Trait,2).(\$M2)
\end{tabular} \\
\hline !PATH pathlist & \begin{tabular}{l}
The ! PATH (or !PART) control statement may list multiple path numbers so that the following lines are honoured if any one of the listed path numbers is active. The !PATH qualifier must appear at the beginning of its own line after the !DOPATH qualifier. A sequence of path numbers can be written using \(a: b\) notation. For example \\
mydata.asd !DOPATH 4 \\
!PATH 24 6:10 \\
One situation where this might be useful is where it is necessary to run simpler models to get reasonable starting values for more complex variance models. The more complex models are specified in later parts and the ! CONTINUE command is used to pick up the previous estimates.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

The following code will run through 1000 models fitting 1000 different marker variables to some data. For processing efficiently the 1000 marker variables are held in 1000 separate files in subfolder MLIB and indexed by Genotype.
```

Marker screen
Genotype *
yield
PhenData.txt
!CYCLE 1:1000
!MBF mbf(Genotype) MLIB\Marker$I.csv !RENAME Marker$I
yld ~ mu !r Marker\$I

```

\subsection*{11.5 Performance issues}

Having completed the run, the Unix command sequence
grep LogL: screen.asr | sort > screen.srt
sorts a summary of the results to identify the best fit. The best fit can then be added to the model and the process repeated. Assuming Marker35 was best, the revised job could be
```

Marker screen
Genotype *
yield
PhenData.txt
!CYCLE 1:1000
!MBF mbf(Genotype) MLIB\Marker$I.csv !RENAME Marker$I
!MBF mbf(Genotype) MLIB\Marker35.csv !RENAME MKR035
yld ~ mu !r MKR035 Marker\$I

```

We have given Marker35 a new name because it is still also generated by the !CYCLE unless it is modified to read
```

!CYCLE 1:34 36:1000 .

```

After several cycles, we might have
```

Marker screen
Genotype *
yield
PhenData.txt
!ASSIGN MSET R21 R35 R376 R645 R879
!CYCLE 1:1000
!MBF mbf(Genotype) MLIB\Marker$I.csv !RENAME Marker$I
!FOR $MSET !DO !MBF mbf(Genotype) MLIB\Marke$S.csv !RENAME \$S
yld ~ mu !r $MSET Marker$I

```

\subsection*{11.4.4 Order of Substitution}

The substitution order is ASSIGN, FOR, CYCLE, TP, command line arguments and finally the interactive prompt.

\subsection*{11.5 Performance issues}

\subsection*{11.5.1 Multiple processors}

ASReml has not been configured for parallel processing. Performance is downgraded if it tries to use two processors simultaneously as it wastes time swapping between processors.

\subsection*{11.5.2 Slow processes}

The processing time is related to the size of the model, the complexity of the variance model (in particular the number of parameters), the sparsity of the mixed model equations, the

\subsection*{11.5 Performance issues}
amount of data being processed.
Typically, the first iteration take longer than other iterations. The extra work in the first iteration is to determine an optimum equation order for processing the model (see !EQORDER).

The extra processes in the last iteration are optional. They include
- calculation of predicted values (see PREDICT statement),
- calculation of denominator degrees of freedom (see !DDF),
- calculation of outlier statistics (see !OUTLIER).

If a job is being run a large number of times, significant gains in processing time can sometimes be made by reorganising the data (so reading of irrelevant data is avoided), using binary data files, use of !CONTINUE to reduce the number of iterations, and avoiding unnecessary output (see !SLNFORM, ! YHTFORM and ! NOGRAPHICS).

\subsection*{11.5.3 Timing processes}

The elapsed time for the whole job can be calculated approximately by comparing the start time with the finish time. Timings of particular processes can be obtained by using the !DEBUG !LOGFILE qualifiers on the first line of the job. This requests the .asl file be created and hold some intermediate results, especially from data setup and the first iteration. Included in that information is timing information on each phase of the job.

\section*{12 Command file: Merging data files}

\subsection*{12.1 Introduction}

The MERGE directive, described in this chapter, is designed to combine information from two files into a third file with a range of qualifiers to accomodate various scenarios. It was developed with assistance from Chandrapal Kailasanathan to replace the !MERGE qualifier (see page 64) which had very limited functionality.

The MERGE directive is placed BEFORE the data filename lines. It is an independent part of the ASReml job in the sense that none of the files are necessarily involved in the subsequent analyses performed by the job, and there may be multiple MERGE directives. Indeed, the job may just consist of a title line and MERGE directives. The !MERGE qualifier, on the other hand, combines information from two files into the internal data set which ASReml uses for analysis and does not save it to file. It has very limited in functionality.

The files to be merged must conform to the following basic structure:
- the data fields must be TAB, COMMA or SPACE separated,
- there will be one heading line that names the columns in the file,
- the names may not have embedded spaces,
- the number of fields is determined from the number of names,
- missing values are implied by adjacent commas in comma delimited files. Otherwise, they are indicated by NA, * or . as in normal ASReml files.
- the merged file will be TAB separated if a .txt file, COMMA separated if a . csv file and SPACE separated otherwise.

\subsection*{12.2 Merge Syntax}

The basic merge command is

MERGE file1 !WITH file2 !TO newfile.
Typically files to be merged will have common key fields. In the basic merge, (!KEY not specified) any fields having the same names are taken as the key fields and if the files have no fields in common, they are assumed to match on row number. Fields are referenced by name (case sensitive).

The full command is:
```

MERGE file1 [!KEY keyfields] [!KEEP] [!SKIP fields]
!WITH file2 [!KEY keyfields] [!KEEP] [!NODUP] [!SKIP fields]
!TO newfile [!CHECK] [!SORT].

```

Warning: Fields in the merged file will be arranged with key fields followed by other fields from the primary file and then fields from the secondary file.

Table 12.1: List of MERGE qualifiers
\begin{tabular}{ll}
\hline qualifier & action \\
\hline !CHECK & \begin{tabular}{l} 
requests ASReml confirm that fields having a common name have the same \\
contents. Discrepancies are reported to the .asr file. If there are fields \\
with common names which are not key fields, and ! CHECK is omitted, the \\
fields will be assumed different and both versions will be copied. \\
names the fields which are to be used for matching records in the files. \\
If the fields have the same name in both file headers, they need only be \\
named in association with the primary input file. If the key fields are \\
the only fields with common names, the ! KEY qualifier may be omitted \\
altogether. If key fields are not nominated and there are no common field
\end{tabular} \\
names, the files are interleaved. \\
instructs ASReml to include in the merged file records from the input \\
file which are not matched in the other input file. Missing values are \\
inserted as the values from the other file. Otherwise, unmatched records \\
are discarded. ! KEEP may be specified with either or both input files.
\end{tabular}

\subsection*{12.3 Examples}

The merging algorithm is briefly as follows: The secondary file is read in, skip fields being omitted, and the records are sorted on the key fields. If sorted output is required, the primary file is also read in and sorted. The primary file (or its sorted form) is then processed line by line and the merged file is produced. Matching of key fields is on a string basis, not a value basis. If there are no key fields, the files are merged by interleaving.

If there are multiple records with the same key, these are severally matched. That is if 3 lines of file 1 match 4 lines of file 2 , the merged file will contain all 12 combinations.

\subsection*{12.3 Examples}

Key fields have different names
```

!MERGE file1 !KEY key1a key1b !WITH file2 !KEY key2a key2b !TO newfile

```

Key fields have common name and other fields are also duplicated !MERGE file1 !KEY keya keyb !WITH file2 !TO newfile !CHECK
!MERGE file1 ! Key key !KEEP !WITH file2 !to newfile
will discard records from file2 that do not match records in file1 but all records in file1 are retained.

Omitting fields from the merged file
!MERGE file1 !KEY key !skip s1a s1b !WITH file2 !SKIP s2a s2b !TO newfile

Single insertion merging
!MERGE adult.txt ! KEY ewe !KEEP !WITH birth.txt ! KEEP !TO newfile ! NODUP bwt.

\section*{13 Functions of variance components}

\subsection*{13.1 Introduction}

ASReml includes a procedure to calculate certain functions of variance components either as a final stage of an analysis or as a postanalysis procedure. These functions enable the calculation of heritabilities and correlations from simple variance components and
```

y ~ mu !r idv(Sire)
residual idv(units)
VPREDICT !DEFINE
F phenvar idv(Sire) + idv(units)
F genvar idv(Sire) * 4
R herit genvar phenvar

``` when US, CORUH and XFA structures are used in the model fitting. A simple example is shown in the code box. The instructions to perform the required operations are listed after the VPREDICT !DEFINE line and terminated by a blank line. ASReml holds the instructions in a .pin until the end of the job when it retrieves the relevant information from the .asr and .vvp files and performs the specified operations. The results are reported in the .pvc file.

In Section 13.2 the syntax for these instructions are discussed. Direct use of the .pin file, as was required in ASReml 2, is discussed in Section 13.3.

\subsection*{13.2 Syntax}

Instructions to calculate functions are headed by a line
VPREDICT !DEFINE
This line and the following instructions can occur anywhere in the .as file but the logical place is at the end of the file. The instructions are processed after the job (part/cycle) has been completed. ASReml recognises a blank line (or end of file) as termination of the functional instructions.

Functions of the variance components are specified by lines of the form
letter label coefficients
- letter (either F, H, R, S, V or X) must occur in column 1
- F forms linear combinations of variance components,

\subsection*{13.2 Syntax}
- H is for forming heritabilities, the ratio of two components,
\(-R\) is for forming the correlation from a covariance component,
- \(S\) is a square root function,
- V is for converting components related to a CORUH or an XFA structure into components related to a US structure,
- X is a multiply function,
- label names the result,
- coefficients is the list of arguments/coefficients for the linear function.

When ASReml reads back the variance parameters from the .asr file, each covariance component, or variance function, is assigned a name. The full name is usually the covariance function, or its specified contracted form, prepended by the consolidated model term, or its specified contracted form, and the symbol ;. Exceptions to this rule are single components F , \(\mathrm{id}[\mathrm{v}]\) ( F ) and \(\mathrm{nrm}[\mathrm{v}]\) ( F ) terms which are reduced to the corresponding single term F , id [v] (F) and nrm [v] (F). So, for example, with the random model and residual specification model terms
```

!r idv(A) ar1v(B) nrm(C).us(Trait) D
residual id(units).us(Trait)

```

The covariance functions with parameters
idv(A), ar1v(B), us(Trait) in nrm(C). us(Trait)
and
us(Trait) in id(units).us(Trait) are named
\(i d v(A), \operatorname{ar1v}(B) ; \operatorname{ar1v}(B), \operatorname{nrm}(C) . u s(T r a i t) ; u s(T r a i t), i d(u n i t s) . u s(T r a i t) ; u s(T r a i t)\). If the resulting name is not ambiguous the name can be contracted by reducing the consolidated model term to a unique substring or leaving out the consolidated model term completely. For example, in the example the covariance functions can be represented by \(i d v(A), \operatorname{ar1v}(B), C ; u s(T r a i t)\) and units; us(Trait), respectively. Individual parameters within a covariance component can be specified by number, or sequence of numbers ( \(n: m\) ) by appending these in square braces, for example, C;us (Trait) [3] or units; us (Trait) [4:6]. If the residual directive is not used, the default R structure parameters are effectively named Residual. The orphan term D with no explicit variance function is treated as idv(D) structure with name D . If the user is in doubt of the name or number of a parameter then running the program with VPREDICT !DEFINE and a blank line will construct a .pvc file with the names and numbers of parameters identified.

The original implementation was based entirely on the numbers but it will generally be better to use the names, since the order model terms are reported cannot always be predicted.

Critical change For generalised linear models in ASReml Release 4, the .pvc file reports and numbers, for completeness, a residual or dispersion parameter both when the parameter is estimated or when it is fixed. By contrast, ASReml 3 does not report nor number if the parameter is fixed by default at 1 . Hence the parameters might be numbered differently in ASReml 4 and ASReml 3.

\subsection*{13.2.1 Functions of components}

First ASReml extracts the variance components from the .asr file and their variance matrix from the .vvp file. The F, S, V and X functions create new components which are appended to the list. For example, the F function appends component \(k+\boldsymbol{c}^{\prime} \boldsymbol{v}\) and forms
```

y ~ mu !r idv(Sire)
residual idv(units)
VPREDICT !DEFINE
F phenvar idv(Sire) + idv(units)
F genvar idv(Sire) * 4
R herit genvar phenvar

``` \(\operatorname{cov}\left(\boldsymbol{c}^{\prime} \boldsymbol{v}, \boldsymbol{v}\right)\) and \(\operatorname{var}\left(\boldsymbol{c}^{\prime} \boldsymbol{v}\right)\) where \(\boldsymbol{v}\) is the vector of existing variance components, \(\boldsymbol{c}\) is the vector of coefficients for the linear function and \(k\) is an optional offset which is usually omitted but would be 1 to represent the residual variance in a probit analysis and 3.289 to represent the residual variance in a logit analysis. The general form of the directive is
```

F label }a+b*\mp@subsup{c}{b}{}+c+d+m*

```
where \(a, b, c\) and \(d\) are the numbers or names of existing components \(v_{a}, v_{b}, v_{c}\) and \(v_{d}\) and \(c_{b}\) is a multiplier for \(v_{b} . m\) is a number greater than the current length of \(\boldsymbol{v}\) to flag the special case of adding the offset \(k\). When using the component numbers, the form \(a: b\) can be used to reference blocks of components as in

F label a:b * \(k+c: d\)

The instructions in the ASReml code box corresponds to a simple sire model so that variance component 1 is the Sire variance and variance component 2 is the residual variance, then
F phenvar \(1+2\)
or
F phenvar idv(Sire) + idv(units)
creates a third component called phenvar which is the sum of the variance components, that is, the phenotypic variance,
F genvar \(1 * 4\)
or
F genvar idv(Sire) * 4
creates a fourth component called genvar which is the sire variance component multiplied by 4 , that is, the genotypic variance.

\subsection*{13.2 Syntax}

Ratios, or in particular cases heritabilities, are requested by function lines beginning with an H . The specific form of the directive is

H label \(n d\)
This calculates \(\sigma_{n}^{2} / \sigma_{d}^{2}\) and \(s e\left[\sigma_{n}^{2} / \sigma_{d}^{2}\right]\) where \(n\)
```

y ~ mu !r idv(Sire)
residual idv(units)
VPREDICT !DEFINE
F phenvar idv(Sire) +idv(units)
F genvar idv(Sire) * 4
R herit genvar phenvar

```
and \(d\) are the names of the components or integers pointing to components \(v_{n}\) and \(v_{d}\) that are to be used as the numerator and denominator respectively in the heritability calculation.

Note that covariances between ratios and other components are not generated so the ratios are not numbered and cannot be used to derive other functions. To avoid numbering confusion it is better to include \(H\) functions at the end of the VPREDICT block.

In the example
H herit 43
or H herit genvar phenvar
calculates the heritability by calculating component 4 (from second line) / component 3 (from first line), that is, genetic variance / phenotypic variance.

S label \(i: j \quad\) when \(i: j\) are assumed positive variance parameters, inserts components which are the SQRT of components \(i: j\).

X label \(i^{*} k\) inserts a component being the product of components \(i\) and \(k\).
X label \(i: j^{*} k\) inserts \(j-i+1\) components being the products of components \(i: j\) and \(k\).
X label \(i: j^{*} k: l\) inserts a set of \(j-i+1\) components being the pairwise products of components \(i: j\) and \(k: l\).

The \(S\) and \(X\) functions are new in ASReml Release 4. The multiply option (X) allows a correlation in a CORUV structure to be converted to a covariance. The SQRT option allows conversion of CORGH to US, provided the dimension is moderate (say \(<10\) ).

The variances and covariances are calculated using a Taylor series expansion. Then for parameters \(v_{a}\) and \(v_{b}\) derived from the set of parameters \(\boldsymbol{v}\) with variance matrix \(\boldsymbol{V}\), if \(v_{a}=f_{a}(\boldsymbol{v})\) and \(v_{b}=f_{b}(\boldsymbol{v})\) then if \(\delta \boldsymbol{v}_{a}=\frac{\delta f_{a}(\boldsymbol{v})}{\delta v}\) and if \(\delta \boldsymbol{v}_{b}=\frac{\delta f_{b}(\boldsymbol{v})}{\delta v}\) then \(\operatorname{cov}\left(v_{a}, v_{b}\right)=\delta \boldsymbol{v}_{a}^{\prime} \boldsymbol{V} \delta \boldsymbol{v}_{b}\).

\subsection*{13.2.2 Convert CORUH and XFA to US}

V label \(i: j\) where \(i: j\) spans a CORUH variance structure, inserts the US matrix based on the CORUH parameters.

V label \(i: j\) where \(i: j\) spans an XFA variance structure, inserts the US matrix based on the XFA parameters.

\subsection*{13.2.3 Correlation}

Correlations are requested by lines beginning with an R. The specific form of the directive is

\section*{R label \(a \operatorname{ab} b\)}

This calculates the correlation \(r=\sigma_{a b} / \sqrt{\sigma_{a}^{2} \sigma_{b}^{2}}\) and the associated standard error. \(a, b\) and \(a b\) are integers indicating the position of the
```

y1 y2 ~ Trait !r id(sire).us(Trait)

```
y1 y2 ~ Trait !r id(sire).us(Trait)
residual id(units).us(Trait)
residual id(units).us(Trait)
VPREDICT !DEFINE
VPREDICT !DEFINE
F phenvar 4:6 + 1:3
F phenvar 4:6 + 1:3
#id(sire).us(Trait);us(Trait)
#id(sire).us(Trait);us(Trait)
#+units;us(Trait)
#+units;us(Trait)
R phencorr 7:9 #phenvar
R phencorr 7:9 #phenvar
R gencorr 4:6 #sire;us(Trait)
```

R gencorr 4:6 \#sire;us(Trait)

``` components to be used. Alternatively,
R label a:n
calculates the correlation \(r=\sigma_{a b} / \sqrt{\sigma_{a}^{2} \sigma_{b}^{2}}\) for all correlations in the lower triangular row-wise matrix represented by components \(a\) to \(n\) and the associated standard errors.

Note that covariances between ratios and other components are not generated so the correlations are not numbered and cannot be used to derive other functions. To avoid numbering confusion it is better to include R functions at the end of the VPREDICT block.

In the example
R phencorr 789
or R phencorr phenvar
calculates the phenotypic covariance by calculating
component \(8 / \sqrt{\text { component } 7 \times \text { component } 9}\) where components 7,8 and 9 are created with the first line of the .pin file, and
\(R\) gencorr 4:6 or R gencorr sire; us(Trait)
calculates the genotypic covariance by calculating
component \(5 / \sqrt{\text { component } 4 \times \text { component } 6}\) where components 4,5 and 6 are variance components from the analysis.

\subsection*{13.2.4 A more detailed example}

The following example for a bivariate sire model is a little more complicated. The job file bsiremod.as contains
```

coop.fmt
ywt fat ~ Trait Trait.(age c(brr) sex sex.age) !r us(Trait).id(sire);us(Trait) !f Tr.grp
residual id(units).us(Trait)
VPREDICT !DEFINE
F phenvar id(units).us(Trait);us(Trait) + us(Trait).sire;us(Trait) \# 1:3 + 4:6
F addvar sire;us(Trait) * 4 \# 4:6 * 4
H heritA addvar[1] phenvar[1] \# 107
H heritB addvar[3] phenvar[3] \# 12 9
R phencorr phenvar \# 7 89
R gencorr addvar \# 4:6

```

The relevant lines of the .asr file are
\begin{tabular}{llllllll} 
Model_Term & & \multicolumn{4}{c}{\begin{tabular}{c} 
Sigma \\
effects
\end{tabular}} & Sigma & Sigma/SE
\end{tabular} \% C

Numbering the parameters reported in bsiremod.asr (and bsiremod.vvp)
1 error variance for ywt
2 error covariance for ywt and fat
3 error variance for fat
4 sire variance component for ywt
5 sire covariance for ywt and fat
6 sire variance for fat
then
```

F phenvar id(units).us(Trait);us(Trait) + us(Trait).id(sire);us(Trait) or
F phenvar units;us(Trait) + sire;us(Trait) or F phenvar 1:3 + 4:6

```
creates new components \(\mathbf{7}=\mathbf{1}+\mathbf{4}, \mathbf{8}=\mathbf{2}+\mathbf{5}\) and \(\mathbf{9}=\mathbf{3}+\mathbf{6}\),
F addvar sire;us(Trait) * \(4 \quad\) or F addvar 4:6 * 4
creates new components \(\mathbf{1 0}=\mathbf{4} \times 4, \mathbf{1 1}=\mathbf{5} \times 4\) and \(\mathbf{1 2}=\mathbf{6} \times 4\),

H heritA addvar[1] phenvar[1]
or \(H\) heritA 107
forms \(\mathbf{1 0} / \mathbf{7}\) to give the heritability for ywt,
H heritB addvar [3] phenvar [3]
or H heritB 129
forms 12 / 9 to give the heritability for fat,
R phencorr phenvar
or R phencorr 789
forms \(\mathbf{8} / \sqrt{\mathbf{7} \times \mathbf{9}}\), that is, the phenotypic correlation between ywt and fat,
\(R\) gencorr addvar
or \(R\) gencorr 4:6
forms \(\mathbf{5} / \sqrt{\mathbf{4} \times \mathbf{6}}\), that is, the genetic correlation between ywt and fat.

The resulting .pvc file contains:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{id(units).us(Trait) 8140 effects} \\
\hline 1 id(units).us(Trait) ; us(Trait) & V & 1 & 1 & 23.2055 & 0.522176 \\
\hline 2 id(units).us(Trait); us (Trait) & C & 2 & 1 & 2.50402 & 0.134915 \\
\hline 3 id(units).us(Trait); us(Trait) & V & 2 & 2 & 1.66292 & \(0.506679 \mathrm{E}-01\) \\
\hline us(Trait).id(sire) 184 effects & & & & & \\
\hline 4 us(Trait).id(sire); us(Trait) & V & 1 & 1 & 1.45821 & 0.398418 \\
\hline 5 us(Trait).id(sire); us(Trait) & C & 2 & 1 & 0.130280 & \(0.678542 \mathrm{E}-01\) \\
\hline 6 us(Trait).id(sire); us(Trait) & V & 2 & 2 & \(0.344381 \mathrm{E}-01\) & \(0.169646 \mathrm{E}-01\) \\
\hline
\end{tabular}

\subsection*{13.3 VPREDICT: PIN file processing}


The first 8 lines are based on the .asr file.

\subsection*{13.3 VPREDICT: PIN file processing}

There are four forms of the VPREDICT directive.
- If the .pin file exists and has the same name as the jobname (including any suffix appended by using ! RENAME), just specify the VPREDICT directive.
- If the .pin file exists but has a different name to the jobname, specify the VPREDICT directive with the .pin file name as its argument.
- If the . pin file does not exist or must be reformed, a name argument for the file is optional but the !DEFINE qualifier should be set. Then the lines of the .pin file should follow on the next lines, terminated by a blank line.

An alternative to using VPREDICT is process the contents of the .pin file by running ASReml with the - P command line option specifying the .pin file as the input file.

Note that in this case the code must be self contained and any substitution variable used needs defining in the .pin file. For example, if we wish to use \$sub to indicate fullname, then the assignment of fullname to sub using

\section*{!ASSIGN sub fullname}
needs to be in the . pin file.

\section*{14 Description of output files}

\subsection*{14.1 Introduction}

With each ASReml run a number of output files are produced. ASReml generates the output files by appending various filename extensions to basename. A brief description of the filename extensions is presented in Table 14.1.

Table 14.1: Summary of ASReml output files
file description

\section*{Key output files}
```

.asr

```
. msv
.pvc
.pvs
.res

\section*{Other output files}
contains a progress \(\log\) and error messages if the L command line option is specified.
.aov contains details of the ANOVA calculations.
contains a summary of the data and analysis results.
contains final variance parameter values in a form that is easy to edit for resetting the initial values if ! MSV or ! CONTINUE 3 is used, see Table 5.4.
contains the report produced with the P option.
contains predictions formed by the predict directive.
contains information from using the pol()\(, \mathrm{spl}()\) and fac() functions, the iteration sequence for the variance components and some statistics derived from the residuals.
contains the final parameter values for reading back if the !CONTINUE qualifier is invoked, see Table 5.4.
contains the estimates of the fixed and random effects and their corresponding standard errors.
contains tables formed by the tabulate directive.
contains variance parameter values in a form that is easy to edit for resetting the initial values if !TSV or ! CONTINUE 2 is used, see Table 5.4.
contains the predicted values, residuals and diagonal elements of the hat matrix for each data point.
.apj

> is an ASReml project file created by ASReml-W .

Table 14.1: Summary of ASReml output files
\begin{tabular}{|c|c|}
\hline file & description \\
\hline .ask & holds the ! RENAME ! ARG argument from the most recent run so that ASReml can retrieve restart values from the most recent run when ! CONTINUE is specified but there is no particular .rsv file for the current! ARG argument. \\
\hline . asp & contains transformed data, see ! PRINT in Table 5.2. \\
\hline .ass & contains the data summary created by the ! SUM qualifier (see page 68). \\
\hline .dbr/.dpr/.spr & contains the data and residuals in a binary form for further analysis (see ! RESIDUALS, Table 5.5). \\
\hline .veo & holds the equation order to speed up re-running big jobs when the model is unchanged. This binary file is of no use to the user. \\
\hline .vll & holds factor level names when data/residuals are saved in binary form. See !SAVE on page 81. \\
\hline .vrb & contains the estimates of the fixed effects and their variance if ! VRB qualifier specified. \\
\hline .vvp & contains the approximate variances of the variance parameters. It is designed to be read back for calculating functions of the variance parameters (see VPREDICT in chapter 13. \\
\hline .was & basename.was is open while ASReml is running and deleted when it finishes. It will normally be invisible to the user unless the job crashes. It is used by ASReml-W to tell when the job finishes. \\
\hline .xml & contains key information from the .asr, . pvs and .res file in a form easier for computers to parse. \\
\hline
\end{tabular}

An ASReml run generates many files and the .sln and .yht files, in particular, are often quite large and could fill up your disk space. You should therefore regularly tidy your working directories, maybe just keeping the .as, .asr, .rsv and .pvs files.

\subsection*{14.2 An example}

In this chapter the ASReml output files are discussed with reference to a two-dimensional separable autoregressive spatial analysis of the NIN field trial data, see model 3b on page 120 of Chapter 7 for details. The ASReml command file for this analysis is presented to the right. Recall that this model specifies a separable autoregressive correlation structure for residual or plot errors that is the direct product of an autoregressive correlation matrix of order 22 for rows and an autoregressive correlation matrix of order 11 for columns.

\subsection*{14.3 Key output files}
```

NIN Alliance Trial 1989
variety !A
id
pid
raw
repl 4
nloc
yield
lat
long
row 22
column 11
nin89a.asd !skip 1 !DISPLAY 15
tabulate yield ~ variety
yield ~ mu variety !f mv
residual ar1(row).ar1(column)
predict variety

```

The key ASReml output files are the .asr, .sln and . yht files.

\subsection*{14.3.1 The .asr file}

This file contains
- an announcements box (outlined in asterisks) containing current messages,
- a summary of the data for the user to confirm the data file has been interpreted correctly and to review the basic structure of the data and validate the specification of the model,
- the iteration sequence of REML loglikelihood values to check convergence,
- a summary of the variance parameters:
- The Gamma column reports the actual parameter fitted,
- the Sigma column reports the gamma converted to a variance scale if appropriate,
- Sigma/SE is the ratio of the component relative to the square root of the diagonal element of the inverse of the average information matrix Warning Sigma/SE should not be used for formal testing,
- The \% shows the percentage change in the parameter at the last iteration,
- use VPREDICT (see Chapter 13) to calculate meaningful functions of the variance components,
- a table of Wald F statistics for testing fixed effects. (Section 6.11). The table contains the

\subsection*{14.3 Key output files}
numerator degrees of freedom for the terms and 'incremental' F-statistics for approximate testing of effects. It may also contain denominator degrees of freedon, a 'conditional' Wald F statistic and a significance probability.
- estimated effects, their standard errors and \(t\) values for equations in the DENSE portion of the SSP matrix are reported if !BRIEF -1 is invoked; the T-prev column tests difference between successive coefficients in the same factor.

The reported log-likelihood value may be positive or negative and typically excludes some constants from its calculation. It is sometimes reported relative to an offset (when its magnitude exceeds 10000); any offset is reported in the .ass file. Twice the difference in the likelihoods for two models is commonly used as the basis for a likelihood ratio test (see page 16). This is not valid for generalised linear mixed models as the reported LogL does not include components relating to the reweighting. Furthermore, it is not appropriate if the fixed effects in the model have changed. In particular, if fixed effects are fitted in the sparse equations, the order of fitting may change with a change in the fitted variance structure resulting in non comparable likelihoods even though the fixed terms in the model have not changed. The iteration sequence terminates when the maximum iterations (see !MAXIT on page 68) has been reached or successive LogL values are less than \(0.002 i\) apart.

The following is a copy of nin89a.asr.
```

ASReml 4.0 [01 Jan 2013] NIN Alliance Trial }1989\mathrm{ version \& title
Build ki [07 Jan 2014] }64\mathrm{ bit date
29 Jan 2014 09:34:34.315 32 Mbyte Windows x64 nin89a workspace
Licensed to: VSNi (Robin Thompson) 3

* Contact support@asreml.co.uk for licensing and support
*** ARG *
Folder: D:\latest\Data\examples4\arg\Manex4f
variety !A
QUALIFIERS: !SKIP 1 !DISPLAY 15
QUALIFIER: !DOPART 1 is active
Reading nin89aug.asd FREE FORMAT skipping 1 lines
Univariate analysis of yield
Summary of 242 records retained of 242 read data summary

```
\begin{tabular}{lrrrrrrr} 
Model term & Size \#miss \#zero & MinNon0 & Mean & MaxNon0 & StndDevn \\
1 variety & 56 & 0 & 0 & 1 & 26.4545 & 56 & \\
2 id & & 0 & 0 & 1.0000 & 26.45 & 56.00 & 17.18 \\
3 pid & & 18 & 0 & 1101. & 2628. & 4156. & 1121. \\
4 raw & & 18 & 0 & 21.00 & 510.5 & 840.0 & 149.0 \\
5 repl & 4 & 0 & 0 & 1 & 2.4132 & 4 & \\
6 nloc & & 0 & 0 & 4.000 & 4.000 & 4.000 & 0.000 \\
7 yield & Variate & 18 & 0 & 1.050 & 25.53 & 42.00 & 7.450 \\
8 lat & & 0 & 0 & 4.300 & 25.80 & 47.30 & 13.63 \\
9 long & & 0 & 0 & 1.200 & 13.80 & 26.40 & 7.629 \\
10 row & 22 & 0 & 0 & 1 & 11.5000 & 22 &
\end{tabular}

\subsection*{14.3 Key output files}
```

11	column	11	0	0	1	6.0000

12 mu 1
13 mv_estimates 18
ar1v(row) in ar1(row).ar1(column) has size 22, parameters: 5 5
ar1(column) in ar1(row).ar1(column) has size 11, parameters: 6 6
ar1(row).ar1(column) [4: 6] initialized.
Sorting Section 1: }22\mathrm{ rows by 11 columns
Forming 75 equations: 57 dense.
Initial updates will be shrunk by factor 0.316
Notice: Specify !SIGMAP to allow the Sigma parameterisation
Notice: 1 singularities detected in design matrix. iterations

```

```

 - - - Results from analysis of yield - - -
 Akaike Information Criterion 804.65 (assuming 3 parameters).
Bayesian Information Criterion 814.02

Model_Term ar1 (row).ar1 (column)	Gamma				Sigma	Sigma/SE	\% C	
		242	effects					
Residual	SCA_V	242	1.000000		48.7026	6.81		P parameter
row	AR_R	1	0.655480		0.655480	11.63		P estimates
column	AR_R	1	0.437505		0.437505	5.43		P
Wald F statistics								
Source of Variation			NumDF	DenDF	F-inc		P-in	nc testing
12 mu			1	25.0	331.93		<. 00	01 fixed
1 variety			55	110.8	2.22		<. 00	01 effects

Notice: The DenDF values are calculated ignoring fixed/boundary/singular
variance parameters using algebraic derivatives.
1 3 mv_estimates 18 effects fitted
6 possible outliers: in section 11 (see .res file)
Finished: 29 Jan 2014 09:34:34.861 LogL Converged

```

Following is a table of Wald F statistics augmented with a portion of Regression Screen output. The qualifier was !SCREEN 3 !SMX 3.

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 type & 4 & 63.8 & 22.95 & 3.01 & A 0.024 \\
\hline 114 expt.type & 10 & 79.3 & 1.31 & 0.93 & B 0.508 \\
\hline \(23 \times 20\) & 1 & 55.1 & 4.33 & 2.37 & B 0.130 \\
\hline \(24 \times 21\) & 1 & 63.3 & 1.91 & 0.87 & B 0.355 \\
\hline \(25 \times 23\) & 1 & 68.3 & 23.93 & 0.11 & B 0.745 \\
\hline \(26 \times 39\) & 1 & 79.7 & 1.85 & 0.35 & B 0.556 \\
\hline \(27 \times 48\) & 1 & 69.9 & 1.58 & 2.08 & B 0.154 \\
\hline \(28 \times 59\) & 1 & 49.7 & 1.41 & 0.08 & B 0.779 \\
\hline \(29 \times 60\) & 1 & 59.6 & 1.46 & 0.42 & B 0.518 \\
\hline \(30 \times 61\) & 1 & 64.0 & 1.11 & 0.04 & B 0.838 \\
\hline \(31 \times 62\) & 1 & 61.8 & 2.18 & 0.09 & B 0.770 \\
\hline \(32 \times 64\) & 1 & 55.6 & 31.48 & 4.50 & B 0.038 \\
\hline 33 x 65 & 1 & 57.8 & 4.72 & 6.12 & B 0.016 \\
\hline \(34 \times 66\) & 1 & 58.5 & 1.13 & 0.03 & B 0.872 \\
\hline \(35 \times 70\) & 1 & 59.3 & 1.71 & 1.40 & B 0.242 \\
\hline \(36 \times 71\) & 1 & 64.4 & 0.08 & 0.01 & B 0.929 \\
\hline \(37 \times 73\) & 1 & 59.0 & 1.79 & 3.01 & B 0.088 \\
\hline \(38 \times 75\) & 1 & 59.9 & 0.04 & 0.26 & B 0.613 \\
\hline 39 x91 & 1 & 63.8 & 1.44 & 1.44 & B 0.234 \\
\hline
\end{tabular}

Notice: The DenDF values are calculated ignoring fixed/boundary/singular variance parameters using empirical derivatives.


The primary tables reported in the .asr file are now also written in XML format to a . xml file. The intended use of this file is by programs written to parse Asreml output. The information contained in the .xml file includes start and finish times, the data summary, the iteration sequence summary, the summary of estimated variance structure parameters and the Wald F statistics. Developers are advised to parse the .xml file in redeveloping code to

\subsection*{14.3 Key output files}
handle the changes with the new release.

\subsection*{14.3.2 The .sln file}

The .sln file contains estimates of the fixed and random effects with their standard errors in an array with four columns ordered as
factor_name level estimate standard_error
Note that the error presented for the estimate of a random effect is the square root of the prediction error variance. In a genetic context for example where a relationship matrix \(\boldsymbol{A}\) is involved, the accuracy is \(\sqrt{ }\left(1-\frac{s_{i}^{2}}{\left(1+f_{i}\right) \sigma_{A}^{2}}\right)\) where \(s_{i}\) is the standard error reported with the BLUP \(\left(u_{i}\right)\) for the \(i\) th individual, \(f_{i}\) is the inbreeding coefficient reported when! DIAG qualifier is given on a pedigree file line, \(1+f_{i}\) is the diagonal element of \(\boldsymbol{A}\) and \(\sigma_{A}^{2}\) is the genetic variance. The .sln file can easily be read into a GENSTAT spreadsheet or an S-PLUS data frame. Below is a truncated copy of nin89a.sln. Note that
- the order of some terms may differ from the order in which those terms were specified in the model statement,
- the missing value estimates appear at the end of the file in this example.
- the format of the file can be changed by specifying the !SLNFORM qualifier. In particular, more significant digits will be reported.
- use of the !OUTLIER qualifier will generate extra columns containing the outlier statistics described on page 17.
\begin{tabular}{|c|c|c|c|}
\hline Model_Term & Level & Effect & seEffect \\
\hline variety & LANCER & 0.000 & 0.000 variety estimates \\
\hline variety & BRULE & 2.984 & 2.841 \\
\hline variety & REDLAND & 4.706 & 2.977 \\
\hline variety & CODY & -0.3158 & 2.961 \\
\hline variety & ARAPAHOE & 2.954 & 2.727 \\
\hline - - - & & & \\
\hline variety & NE87615 & 1.033 & 2.934 \\
\hline variety & NE87619 & 5.937 & 2.849 \\
\hline variety & NE87627 & -4.378 & 2.997 \\
\hline mu & 1 & 24.09 & 2.465 intercept \\
\hline mv_estimates & 1 & 21.91 & 6.731 missing value estimates \\
\hline mv_estimates & 2 & 23.22 & 6.723 \\
\hline mv_estimates & 3 & 22.52 & 6.711 \\
\hline mv_estimates & 4 & 23.49 & 6.678 \\
\hline mv_estimates & 5 & 22.27 & 6.700 \\
\hline mv_estimates & 6 & 24.47 & 6.709 \\
\hline mv_estimates & 7 & 20.14 & 6.699 \\
\hline mv_estimates & 8 & 25.01 & 6.693 \\
\hline
\end{tabular}
\begin{tabular}{lrll} 
mv_estimates & 9 & 24.29 & 6.678 \\
mv_estimates & 10 & 26.30 & 6.660 \\
mv_estimates & 11 & 24.99 & 6.592 \\
mv_estimates & 12 & 27.78 & 6.493 \\
mv_estimates & 13 & 25.39 & 6.305 \\
mv_estimates & 14 & 26.81 & 5.900 \\
mv_estimates & 15 & 29.07 & 4.906 \\
mv_estimates & 16 & 23.97 & 4.577 \\
mv_estimates & 17 & 24.27 & 4.618 \\
mv_estimates & 18 & 29.82 & 4.532
\end{tabular}

\subsection*{14.3.3 The .yht file}

The .yht file contains the predicted values of the data in the original order (this is not changed by supplying row/column order in spatial analyses), the residuals and the diagonal elements of the hat matrix. Figure 14.1 shows the residuals plotted against the fitted values (Yhat) and a line printer version of this figure is written to the .res file. Where an observation is missing, the residual, missing values predicted value and Hat value are also declared missing. The missing value estimates with standard errors are reported in the .sln file.


Figure 14.1: Residual versus Fitted values
This is part of nin89a.yht. Note that the values corresponding to the missing data (first 15 records) are all \(-0.1000 \mathrm{E}-36\) which is the internal value used for missing values.

\subsection*{14.4 Other ASReml output files}
\begin{tabular}{cccc} 
Record & Yhat & Residual & Hat \\
1 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
2 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
3 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
4 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
- & - & & \\
15 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
16 & 24.089 & 5.161 & 6.075 \\
17 & 27.073 & 4.477 & 6.223 \\
18 & 28.795 & 6.255 & 6.283 \\
19 & 23.773 & 6.327 & 6.236 \\
20 & 27.043 & 6.007 & 5.963 \\
- & - & & \\
239 & 21.522 & 8.128 & 6.314 \\
240 & 24.696 & 1.854 & 6.114 \\
241 & 25.452 & 0.1480 & 6.159 \\
242 & 22.464 & 4.436 & 6.605
\end{tabular}

\subsection*{14.4 Other ASRemI output files}

\subsection*{14.4.1 The .aov file}

This file reports details of the calculation of Wald F statistics, particularly as relating to the conditional Wald F statistics (not computed in this demonstration). In the following table relating to the incremental Wald F statistic, the columns are
- model term
- columns in design matrix
- numerator degrees of freedom
- simple Wald F statistic
- Wald F statistic scaled by \(\lambda\)
- \(\lambda\) as defined in Kenward \& Roger.
\begin{tabular}{lrrrrrr} 
denominator degrees of \begin{tabular}{ll} 
freedom & \\
& \\
Source & Size NumDF \\
mu & F-value \\
Lambda*F & Lambda
\end{tabular} DenDF \\
variety & 1 & 1 & 331.9252 & 331.9252 & 1.0000 & 25.0143 \\
& 56 & 55 & 2.2257 & 2.2245 & 0.9995 & 110.8370
\end{tabular}

\subsection*{14.4 Other ASReml output files}

A more useful example is obtained by adding a linear nitrogen contrast to the oats example (Section 16.2).

The basic design is six replicates of three whole plots to which variety was randomised, and four subplots which received 4 rates of nitrogen. A !CONTRAST qualifier defines the model term linNitr as the linear covariate representing ntrogen applied. Fitting this before the model term nitrogen means that this latter term represents lack of fit from a linear response.
```

Split plot analysis - oat
blocks *
nitrogen !A
subplots
variety !A
wplots *
yield
oats.asd !skip 2
!CONTRAST linNitr nitrogen .6 .4 . 2 0
!FCON
yield ~ mu variety linNitr nitrogen,
variety.linNitr variety.nitrogen,
!r idv(blocks) idv(blocks.wplots)
residual idv(units)

```

The ! FCON qualifier requests conditional Wald F statistics. As this is a small example, denominator degrees of freedom are reported by default. An extract from the .asr file is followed by the contents of the .aov file.


The analysis shows that there is a significant linear response to nitrogen level but the lack of fit term and the interactions with variety are not significant. In this example, the conditional Wald F statistic is the same as the incremental one because the contrast must appear before the lack-of-fit and the main effect before the interaction and otherwise it is a balanced analysis.

\subsection*{14.4 Other ASReml output files}

The first part of the .aov file, the FMAP table only appears if the job is run in DEBUG mode. There is a line for each model term showing the number of non-singular effects in the terms before the current term is absorbed. For example, variety.nitrogen initially has 12 degrees of freedom (non-singular effects). mu takes 1, variety then takes 2, linNitr takes 1 , nitrogen takes 2 , variety. linNitr takes 2 and there are four degrees of freedom left. This information is used to make sure that the conditional Wald F statistic does not contradict marginality principles.

The next table indicates the details of the conditional Wald F statistic. The conditional Wald F statistic is based in the reduction in Sums of Squares from dropping the particular term (indicated by *) from the model also including the terms indicated by I, C and c.

The next two tables, based on incremental and conditional sums of squares report the model term, the number of effects in the term, the (numerator) degrees of freedom, the Wald F statistic, an adjusted Wald F statistic scaled by a constant reported in the next column and finally the computed denominator degrees of freedom. The scaling constant is discussed by Kenward and Roger (1997).
```

Table showing the reduction in the numerator degrees of freedom
for each term as higher terms are absorbed.

Model Term	6	5	4	3	2	1
1 mu	12	3	4	1	3	1
2 variety	11	3	3	1	2	
3 LinNitr	9	3	3	1		
4 nitrogen	8	2	2			
5 variety.LinNitr	6	2				
6 variety.nitrogen	4					

 Marginality pattern for F-con calculation
 -- Model terms --
 Model Term DF 1
1 mu 1 * . C . C .
2 variety 2 I * C C . .
3 LinNitr 1 I I * . . .
4 nitrogen 2 I I I * . .
5 variety.LinNitr 2 I I I I * .
6 variety.nitrogen 4 I I I I I *
Model codes: b A a A b B
F-inc tests the additional variation explained when the term (*)
is added to a model consisting of the I terms.
F-con tests the additional variation explained when the term (*)
is added to a model consisting of the I and C/c terms.
The . terms are ignored for both F-inc and F-con tests.

```
    Incremental F statistics - calculation of Denominator degrees of freedom
Source Size NumDF F-value Lambda*F Lambda DenDF
\(\begin{array}{lllllll}\mathrm{mu} & 1 & 1 & 245.1409 & 245.1409 & 1.0000 & 5.0000\end{array}\)
\(\begin{array}{lllllll}\text { variety } & 3 & 2 & 1.4853 & 1.4853 & 1.0000 & 10.0000\end{array}\)

\subsection*{14.4 Other ASReml output files}
\begin{tabular}{lrrrrrr} 
LinNitr & 1 & 1 & 110.3232 & 110.3232 & 1.0000 & 45.0000 \\
nitrogen & 4 & 2 & 1.3669 & 1.3669 & 1.0000 & 45.0000 \\
variety.LinNitr & 3 & 2 & 0.4753 & 0.4753 & 1.0000 & 45.0000 \\
variety.nitrogen & 12 & 4 & 0.2166 & 0.2166 & 1.0000 & 45.0000 \\
& & & & & & \\
\multicolumn{1}{c}{ Conditional } & F statistics & - & calculation & of Denominator degrees of freedom \\
Source & Size NumDF & F-value & Lambda*F & Lambda & DenDF \\
mu & 1 & 1 & 138.1360 & 138.1360 & 1.0000 & 6.0475 \\
variety & 3 & 2 & 1.4853 & 1.4853 & 1.0000 & 10.0000 \\
LinNitr & 1 & 1 & 110.3232 & 110.3232 & 1.0000 & 45.0000 \\
nitrogen & 4 & 2 & 1.3669 & 1.3669 & 1.0000 & 45.0000 \\
variety.LinNitr & 3 & 2 & 0.4753 & 0.4753 & 1.0000 & 45.0000 \\
variety.nitrogen & 12 & 4 & 0.2166 & 0.2166 & 1.0000 & 45.0000
\end{tabular}

\subsection*{14.4.2 The .asl file}

The .asl file is primarily used for low-level debugging. It is produced when the !LOGFILE qualifier is specified and contains lowlevel debugging information information when the !DEBUG qualifier is also given.

However, when a job running on a Unix system crashes with a Segmentation fault, the output buffers are not flushed so the output files do not reflect the latest program output. In this case, use the Unix script screen.log command before running ASReml with the ! DEBUG qualifier but without the ! LOGFILE qualifier, to capture all the debugging information in the file screen.log.

The debug information pertains particularly to the first iteration and includes timing information reported in lines beginning >>>\gg>>\gg>>>. These lines also mark progress through the iteration.

\subsection*{14.4.3 The .dpr file}

The .dpr file contains the data and residuals from the analysis in double precision binary form. The file is produced when the !RES qualifier (Table 4.3) is invoked. The file could be renamed with filename extension . dbl and used for input to another run of ASReml. Alternatively, it could be used by another Fortran program or package. Factors will have level codes if they were coded using ! A or ! I. All the data from the run plus an extra column of residuals is in the file. Records omitted from the analysis are omitted from the file.

\subsection*{14.4.4 The .msv file}

The .msv file contains the variance parameters from the most recent iteration of a model in a form that is relatively easy to edit if the values need to be reset. The file is read when !MSV or !CONTINUE 3 is specified. This is nin89a.msv:

\subsection*{14.4 Other ASReml output files}
```


This .msv file is a mechanism for resetting initial parameter values

by changing the values here and rerunning the job with !CONTINUE 3.

You may not change values in the first 3 fields

or RP fields where RP_GN is negative.

Fields are:

GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale.

 4, "Variance 1", V, P, 1.00000000 , 4, 1
 5, "ar1(row).ar1(column);ar1v(row)_1", R, P, 0.65547976 , 5, 1
 6, "ar1(row).ar1(column);ar1(column)_1", R, P, 0.43750453 , 6, 1

Valid values for Pspace are F, P, U and maybe Z.

RP_GN and RP_scale define simple parameter relationships;

RP_GN links related parameters by the first GN number;

RP_scale must be 1.0 for the first parameter in the set and

otherwise specifies the size relative to the first parameter.

Multivalue RP_scale parameters may not be altered here.

Notice that this file is overwritten if not being read.

```

\subsection*{14.4.5 The .pvc file}

The .pvc file contains functions of the variance components produced by running a .pin file on the results of an ASReml run as described in Chapter 13. The .pin and .pvc files for a half-sib analysis of the Coopworth data are presented in Section 16.10.

\subsection*{14.4 Other ASReml output files}

\subsection*{14.4.6 The .pvs file}

The .pvs file contains the predicted values formed when a predict statement is included in the job. Below is an edited version of nin89a.pvs. See Section 3.6 for the .pvs file for the simple RCB analysis of the NIN data considered in that chapter.
```

NIN Alliance Trial 1989 03 Feb 2014 06:23:03 title line
nin89a
Ecode is E for Estimable, * for Not Estimable
Warning: mv_estimates is ignored for prediction
The predictions are obtained by averaging across the hypertable
calculated from model terms constructed solely from factors
in the averaging and classify sets.
Use !AVERAGE to move ignored factors into the averaging set.
Predicted values of yield
variety Predicted_Value Standard_Error Ecode predicted variety means
LANCER 24.0891 2.4648 E
BRULE 27.0731 2.4946 E
REDLAND 28.7953 2.5066 E
CODY 23.7733 2.4973 E
ARAPAHOE 27.0429 2.4420 E
NE83404 25.7199 2.4426 E
NE83406 25.3793 2.5030 E
NE83407 24.3981 2.6882 E
CENTURA 26.3531 2.4765 E
SCOUT66 29.1741 2.4363 E

- - -

NE87615 25.1218 2.4436 E
NE87619 30.0261 2.4669 E
NE87627 19.7108 2.4836 E
SED: Overall Standard Error of Difference 2.925 SED summary

```

\subsection*{14.4.7 The .res file}

The .res file contains miscellaneous supplementary information including
- a list of unique values of \(x\) formed by using the fac() model term,
- a list of unique \((x, y)\) combinations formed by using the \(\mathrm{fac}(x, y)\) model term,
- legandre polynomials produced by leg() model term,
- orthogonal polynomials produced by pol() model term,
- the design matrix formed for the spl() model term,

\subsection*{14.4 Other ASReml output files}
- predicted values of the curvature component of cubic smoothing splines,
- the empirical variance-covariance matrix based on the BLUPs when a \(\boldsymbol{\Sigma} \otimes \boldsymbol{I}\) or \(\boldsymbol{I} \otimes \boldsymbol{\Sigma}\) structure is used; this may be used to obtain starting values for another run of ASReml,
- a table showing the variance components for each iteration,
- a figure and table showing the variance partitioning for any XFA structures fitted,
- some statistics derived from the residuals from two-dimensional data (multivariate, repeated measures or spatial)
- the residuals from a spatial analysis will have the units part added to them (defined as the combined residual) unless the data records were sorted (within ASReml) in which case the units and the correlated residuals are in different orders (data file order and field order respectively),
- the residuals are printed in the . yht file but the statistics in the .res file are calculated from the combined residual,
- the Covariance/Variance/Correlation (C/V/C) matrix calculated directly from the residuals; it contains the covariance below the diagonals, the variances on the diagonal and the correlations above the diagonal:

The fitted matrix is the same as is reported in the .asr file and if the Logl has converged is the one you would report. The BLUPs matrix is calculated from the BLUPs and is provided so it can be used as starting values when a simple initial model has been used and you are wanting to attempt to fit a full unstructured matrix. For computational reasons, it pertains to the parameters and so may differ from the parameter values generated by the last iteration. The BLUPs matrix may look quite different from the fitted matrix because BLUPs are shrunken phenotypes. The BLUPs matrix retains much of the character of the phenotypes; the rescaled has the variance from the fitted and the covariance from the BLUPs and might be more suitable as an initial matrix if the variances have been estimated. The BLUPs and rescaled matrices should not be reported.
- relevant portions of the estimated variance matrix for each term for which an R structure or a G structure has been associated,
- a variogram and spatial correlations for spatial analysis; the spatial correlations are based on distance between data points (see Gilmour et al., 1997),
- the slope of the \(\log (a b s o l u t e ~ r e s i d u a l) ~ o n ~ l o g(p r e d i c t e d ~ v a l u e) ~ f o r ~ a s s e s s i n g ~ p o s s i b l e ~ m e a n-~\) variance relationships and the location of large residuals. For example,

SLOPES FOR LOG(ABS(RES)) ON LOG(PV) for section 1
0.992 .014 .34
produced from a trivariate analysis reports the slopes. A slope of \(b\) suggests that \(y^{1-b}\)
might have less mean variance relationship. If there is no mean variance relation, a slope of zero is expected. A slope of \(\frac{1}{2}\) suggests a SQRT transformation might resolve the dependence; a slope of 1 means a LOG transformation might be appropriate. So, for the 3 traits, \(\log \left(y_{1}\right), y_{2}^{-1}\) and \(y_{3}^{-3}\) are indicated. This diagnostic strategy works better when based on grouped data regressing \(\log (s t a n d a r d\) deviation) on \(\log\) (mean). Also,
STND RES \(16-2.356 .585 .64\)
indicates that for the 16th data record, the residuals are \(-2.35,6.58\) and 5.64 times the respective standard deviations. The standard deviation used in this test is calculated directly from the residuals rather than from the analysis. They are intended to flag the records with large residuals rather than to precisely quantify their relative size. They are not studentised residuals and are generally not relevant when the user has fitted heterogeneous variances.


Min Mean Max -24.873 0.27959 omitting 18.915 zeros
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{23}{|l|}{Spatial diagnostic statistics of Residuals 2211} \\
\hline \multicolumn{23}{|l|}{Residual Plot and Autocorrelations
<LOo- +xXH>} \\
\hline \multicolumn{23}{|c|}{\(++\mathrm{xxx}+\mathrm{X} \mid\)} \\
\hline \multicolumn{23}{|l|}{\(\mid---0+\) + \(\mathrm{x}+\mathrm{x}+\mathrm{x}>+\mathrm{X}\) |} \\
\hline \multicolumn{23}{|l|}{\(10---+++\mathrm{xxx}++\mathrm{X}++\) |} \\
\hline \multicolumn{23}{|l|}{\(1+\quad+++\mathrm{x}-+\mathrm{xxx}+++\mid\)} \\
\hline \multicolumn{23}{|l|}{| \(0--++\) +- \(\mathrm{xx}+\mathrm{xHxx} \mid\)} \\
\hline \multicolumn{23}{|l|}{\(|-+\mathrm{xxx}+\mathrm{xXX}+++\mathrm{x} \mathrm{xX}++\mathrm{x}|\)} \\
\hline \multicolumn{23}{|l|}{\(1-++0-+\mathrm{XxxXXX}-\mathrm{xXX}\) +++|} \\
\hline \multicolumn{23}{|l|}{\(\mid 00 L<00-++\mathrm{x}\) x+xXx+x+H|} \\
\hline \multicolumn{23}{|l|}{\(|\lll \ll 00--x X+\quad-\mathrm{x}++--|\)} \\
\hline \multicolumn{23}{|l|}{\(\mid<0 \ll L L L o o->-+-+\) +} \\
\hline \multicolumn{23}{|l|}{\(\mid \mathrm{L} \lll<0-0 \mathrm{~L}-\mathrm{O}-++\mathrm{x} \times++1\)} \\
\hline 1 & 0.28 & 0.38 & 0.50 & 0.65 & 50. & . 77 & 1.00 & 0.77 & 0.65 & 0. & & & 38 & . 28 & & & & & & & & \\
\hline 2 & 0.17 & 0.27 & 0.39 & 0.51 & 10. & . 56 & 0.64 & 0.56 & 0.50 & & & & 32 & . 26 & & & & & & & & \\
\hline 3 & 0.05 & 0.11 & 0.19 & 0.28 & 80. & . 35 & 0.42 & 0.40 & 0.35 & 0. & & & 24 & . 19 & & & & & & & & \\
\hline \multicolumn{23}{|l|}{Residuals [Percentage of sigma \(=6.979\) ]} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 74 & 64 & 90 & 91 & 86 & 65 & 141 \\
\hline -72 & -29 & -52 & -20 & -61 & & -132 & 26 & 0 & 63 & 15 & & 99 & 9 & 37 & 84 & 48 & 110 & 228 & 49 & 131 & -20 & 9 \\
\hline -87 & 1 & -32 & -14 & -26 & -30 & -3 & 37 & -6 & 4 & 23 & & 32 & 44 & 46 & 109 & 97 & 83 & 67 & 68 & 141 & 69 & 40 \\
\hline 44 & 11 & 0 & 3 & 6 & 0 & 21 & 41 & -15 & 51 & 25 & & 32 & 120 & -33 & 10 & 58 & 117 & 113 & 109 & 63 & 57 & 25 \\
\hline 18 & 18 & -2 & -84 & -19 & -51 & -45 & 18 & 30 & 56 & -9 & & -12 & 53 & -41 & 7 & 99 & 123 & 47 & 119 & 181 & 101 & 104 \\
\hline -40 & 29 & 87 & 103 & 81 & 61 & 81 & 130 & 94 & 10 & 55 & & 53 & 55 & 106 & 15 & 109 & 153 & 23 & 0 & 50 & 66 & 111 \\
\hline -29 & 75 & 43 & -24 & -90 & -37 & -23 & 64 & 130 & 84 & 122 & & 129 & 127 & 90 & -38 & 91 & 133 & 126 & -16 & 57 & 30 & 70 \\
\hline -99 & -114 & -218 & -332 & -174 & -77 & -19 & -38 & -29 & 58 & 63 & & 88 & 4 & 124 & 49 & 101 & 129 & 113 & 45 & 92 & 70 & 198 \\
\hline -257 & -333 & -352 & -319 & -253- & -166 & -152 & -52 & -28 & 0 & 97 & & 135 & 67 & 16 & -9 & -36 & 96 & 24 & 62 & 48 & -27 & -29 \\
\hline -227 & -167 & -356 & -335 & -183- & -179 & -189 & -118 & -124 & 14 & -52 & & 19 & -7 & -56 & -81 & -33 & 63 & -40 & 57 & -15 & 24 & 73 \\
\hline -183 & -277 & -352 & -323 & -288 - & -151 & -56 & -130 & -188 & -29 & -78 & & 7 & 12 & -30 & 39 & 57 & 89 & -3 & 116 & 27 & 2 & 64 \\
\hline
\end{tabular}





Residual [section 11, column 8 (of 11), row 4 (of 22)] is -3.32 SD

\subsection*{14.4 Other ASReml output files}

Residual [section 11, column 9 (of 11), row 2 (of 22)] is -3.33 SD Residual [section 11, column 9 (of 11), row 3 (of 22)] is -3.52 SD Residual [section 11, column 10 (of 11), row 3 (of 22)] is -3.56 SD Residual [section 11, column 10 (of 11), row 4 (of 22)] is -3.35 SD Residual [section 11, column 11 (of 11), row 3 (of 22)] is -3.52 SD 6 possible outliers in section 11: test value 23.0297999308
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Res & dual & 1 s [Pe & ercenta & tage & of sig & gma \(=\) & 6.979 & & ] & & & & & & & & & & \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 74 & 64 & 90 & 91 & 86 & 65 & 141 \\
\hline -72 & -29 & -52 & -20 & -61 & 11 & -132 & 26 & 0 & 63 & 15 & 99 & 9 & 37 & 84 & 48 & 110 & 228 & 49 & 131 & -20 & 9 \\
\hline -87 & 1 & -32 & -14 & -26 & -30 & -3 & 37 & -6 & 4 & 23 & 32 & 44 & 46 & 109 & 97 & 83 & 67 & 68 & 141 & 69 & 40 \\
\hline 44 & 11 & 0 & 3 & 6 & 0 & 21 & 41 & -15 & 51 & 25 & 32 & 120 & -33 & 10 & 58 & 117 & 113 & 109 & 63 & 57 & 25 \\
\hline 18 & 18 & -2 & -84 & -19 & -51 & -45 & 18 & 30 & 56 & -9 & -12 & 53 & -41 & 7 & 99 & 123 & 47 & 119 & 181 & 101 & 104 \\
\hline -40 & 29 & 87 & 103 & 81 & 61 & 81 & 130 & 94 & 10 & 55 & 53 & 55 & 106 & 15 & 109 & 153 & 23 & 0 & 50 & 66 & 111 \\
\hline -29 & 75 & 43 & -24 & -90 & -37 & -23 & 64 & 130 & 84 & 122 & 129 & 126 & 90 & -38 & 91 & 133 & 126 & -16 & 57 & 30 & 70 \\
\hline -99 & -114 & -218 & -332 & -174 & -77 & -19 & -38 & -29 & 58 & 63 & 88 & 4 & 124 & 49 & 101 & 129 & 113 & 45 & 92 & 70 & 198 \\
\hline -257 & -333 & -352 & -319 & -253 & -166 & -152 & -52 & -28 & 0 & 97 & 135 & 67 & 16 & -9 & -36 & 96 & 24 & 62 & 48 & -27 & -29 \\
\hline -227 & -167 & -356 & -335 & -183 & -179 & -189 & -118 & -124 & 14 & -52 & 19 & -7 & -56 & -81 & -33 & 63 & -40 & 57 & -15 & 24 & 73 \\
\hline -183 & -277 & -352 & -323 & -288 & -151 & -56 & -130 & -188 & -29 & -78 & 7 & 12 & -30 & 39 & 57 & 89 & -3 & 116 & 27 & 2 & 64 \\
\hline
\end{tabular}


\subsection*{14.4 Other ASReml output files}


Figure 14.2: Variogram of residuals

Figures 14.2 to 14.5 show the graphics derived from the residuals when the !DISPLAY 15 qualifier is specified and which are written to .eps files by running

\section*{ASReml -g22 nin89a.as}

The graphs are a variogram of the residuals from the spatial analysis for site 1 (Figure 14.2), a plot of the residuals in field plan order (Figure 14.3), plots of the marginal means of the residuals (Figure 14.4) and a histogram of the residuals (Figure 14.5). The selection of which plots are displayed is controlled by the !DISPLAY qualifier (Table 5.4). By default, the variogram and field plan are displayed.

The sample variogram is a plot of the semi-variances of differences of residuals at particular distances. The \((0,0)\) position is zero because the difference is identically zero. ASReml displays the plot for distances \(0,1,2, \ldots, 8,9-10,11-14,15-20, \ldots\).

The plot of residuals in field plan order (Figure 14.3) contains in its top and right margins a diamond showing the minimum, mean and maximum residual for that row or column. Note that a gap identifies where the missing values occur.

The plot of marginal means of residuals shows residuals for each row/column as well as the trend in their means.

Finally, we present a small example of the display produced when an XFA structure is fitted. The output from a small example with 9 environments and 2 factors is



Figure 14.3: Plot of residuals in field plan order



Figure 14.4: Plot of the marginal means of the residuals


Figure 14.5: Histogram of residuals


In the figure, 1 indicates the proportion of TotalVar explained by the first loading, 2 indicates the proportion explained by first and second (provided it plots right of 1. Consequently, the distance from 2 to the right margin represents PsiVar. \%expl reports the percentage of TotalVar explained by all loadings. The last row contains column averages.

\subsection*{14.4.8 The .rsv file}

The .rsv file contains the variance parameters from the most recent iteration of a model. The primary use of the .rsv file is to supply the values for the ! CONTINUE qualifier (see Table 5.4) and the C command line option (see Table 11.1). It contains sufficient information to match terms so that it can be used when the variance model has been changed. This is nin89a.rsv.

\subsection*{14.4 Other ASReml output files}
```


This .rsv file holds parameter values between runs of ASReml and

is not normally modified by the User. The current values of the

the variance parameters are listed as a block on the following lines.

They are then listed again with identifying information

in a form that the user may edit.

0.000000	0.000000	0.000000	1.0000000	0.6554798	0.4375045

RSTRUCTURE	1	2	3
VARIANCE	1	1	0
4, V, P,	1.00000000	0	0
STRUCTURE	22	1	1
5, R, P,	0.65547976	0	0
STRUCTURE	11	1	1
6, R, P,	0.43750453	0	0

```

\subsection*{14.4.9 The .tab file}

The .tab file contains the simple variety means and cell frequencies. Below is a cut down version of nin89.tab.


\subsection*{14.4.10 The .tsv file}

The .tsv file contains the variance parameters as initialized for the most recent run in a form that is relatively easy to edit if the initial values need to be reset. The file is read when !TSV or !CONTINUE 2 is specified or if !CONTINUE is specified but no .rsv file exists. This is nin89a.tsv.

\subsection*{14.4 Other ASReml output files}
```


This .tsv file is a mechanism for resetting initial parameter values

by changing the values here and rerunning the job with !CONTINUE 2.

You may not change values in the first 3 fields

Fields are:

GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale.

 4, "Variance 1", V, P, 1.00000000 , 4, 1
 5, "ar1(row).ar1(column);ar1v(row)_1", R, P, 0.10000000 , 5, 1
 6, "ar1(row).ar1(column);ar1(column)_1", R, P, 0.10000000 , 6, 1

Valid values for Pspace are F, P, U and maybe Z.

RP_GN and RP_scale define simple parameter relationships;

RP_GN links related parameters by the first GN number;

RP_scale must be 1.0 for the first parameter in the set and

otherwise specifies the size relative to the first parameter.

Multivalue RP_scale parameters may not be altered here.

Notice that this file is overwritten if not being read.

```

\subsection*{14.4.11 The .vrb file}

The .vrb file contains the estimates of the effects together with their approximate prediction variance matrix corresponding to the dense portion. It is only written if the !VRB qualifier is specified. The file is formatted for reading back for post processing. The number of equations in the dense portion can be increased (to a maximum of 800) using the !DENSE option (Table 5.5) but not to include random effects. The matrix is lower triangular row-wise in the order that the parameters are printed in the . sln file. It can be thought of as a partitioned lower triangular matrix,
\[
\left[\begin{array}{ll}
\sigma^{2} & \\
\tilde{\boldsymbol{\beta}}_{D} & \sigma^{2} C^{D D}
\end{array}\right]
\]
where \(\tilde{\boldsymbol{\beta}}_{D}\) is the dense portion of \(\boldsymbol{\beta}\) and \(C^{D D}\) is the dense portion of \(C^{-1}\). This is part of nin89a.vrb. Note that the first element is the estimated error variance, that is, 48.6802, see the variance component estimates in the .asr output.
\begin{tabular}{rrlll}
\(0.487026 \mathrm{E}+02\) & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.298409 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) \\
\(0.807354 \mathrm{E}+01\) & \(0.470629 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.456542 \mathrm{E}+01\) & \(0.886497 \mathrm{E}+01\) \\
\(-0.315807 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.409951 \mathrm{E}+01\) & \(0.476481 \mathrm{E}+01\) & \(0.876563 \mathrm{E}+01\) \\
\(0.295379 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.343250 \mathrm{E}+01\) & \(0.389543 \mathrm{E}+01\) & \(0.416076 \mathrm{E}+01\) \\
\(0.743440 \mathrm{E}+01\) & \(0.163089 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.377085 \mathrm{E}+01\) & \(0.428016 \mathrm{E}+01\) \\
\(0.472451 \mathrm{E}+01\) & \(0.402633 \mathrm{E}+01\) & \(0.837086 \mathrm{E}+01\) & \(0.129027 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) \\
\(0.329974 \mathrm{E}+01\) & \(0.347377 \mathrm{E}+01\) & \(0.357535 \mathrm{E}+01\) & \(0.316846 \mathrm{E}+01\) & \(0.412043 \mathrm{E}+01\) \\
\(0.768099 \mathrm{E}+01\) & \(0.309076 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.376552 \mathrm{E}+01\) & \(0.419706 \mathrm{E}+01\) \\
\(0.395640 \mathrm{E}+01\) & \(0.383367 \mathrm{E}+01\) & \(0.458364 \mathrm{E}+01\) & \(0.378483 \mathrm{E}+01\) & \(0.984962 \mathrm{E}+01\) \\
\(0.226400 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.379190 \mathrm{E}+01\) & \(0.442373 \mathrm{E}+01\) & \(0.439411 \mathrm{E}+01\) \\
\(0.402430 \mathrm{E}+01\) & \(0.440457 \mathrm{E}+01\) & \(0.362313 \mathrm{E}+01\) & \(0.502025 \mathrm{E}+01\) & \(0.901017 \mathrm{E}+01\) \\
\(0.508505 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.393519 \mathrm{E}+01\) & \(0.430418 \mathrm{E}+01\) & \(0.423685 \mathrm{E}+01\) \\
\(0.428749 \mathrm{E}+01\) & \(0.417784 \mathrm{E}+01\) & \(0.363262 \mathrm{E}+01\) & \(0.444716 \mathrm{E}+01\) & \(0.527187 \mathrm{E}+01\)
\end{tabular}

\subsection*{14.5 ASReml output objects and where to find them}
\begin{tabular}{lllll}
\(0.855044 \mathrm{E}+01\) & \(0.243553 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.351279 \mathrm{E}+01\) & \(0.369901 \mathrm{E}+01\) \\
\(0.383964 \mathrm{E}+01\) & \(0.330102 \mathrm{E}+01\) & \(0.361942 \mathrm{E}+01\) & \(0.352305 \mathrm{E}+01\) & \(0.359462 \mathrm{E}+01\) \\
\(0.392014 \mathrm{E}+01\) & \(0.406704 \mathrm{E}+01\) & \(0.801337 \mathrm{E}+01\) & \(0.475798 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) \\
\(0.370878 \mathrm{E}+01\) & \(0.418534 \mathrm{E}+01\) & \(0.452789 \mathrm{E}+01\) & \(0.408589 \mathrm{E}+01\) & \(0.446476 \mathrm{E}+01\) \\
\(0.375742 \mathrm{E}+01\) & \(0.403945 \mathrm{E}+01\) & \(0.420473 \mathrm{E}+01\) & \(0.406937 \mathrm{E}+01\) & \(0.403049 \mathrm{E}+01\) \\
\(0.857644 \mathrm{E}+01\) & \(0.606943 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.428611 \mathrm{E}+01\) & \(0.506706 \mathrm{E}+01\) \\
\(0.432088 \mathrm{E}+01\) & \(0.387484 \mathrm{E}+01\) & \(0.436861 \mathrm{E}+01\) & \(0.391305 \mathrm{E}+01\) & \(0.421110 \mathrm{E}+01\)
\end{tabular}

The first 5 rows of the lower triangular matrix are
\begin{tabular}{rrrrr}
48.7026 & & & & \\
0.0000 & 0.0000 & & & \\
2.9841 & 0.0000 & 8.0735 & & \\
4.7063 & 0.0000 & 4.5654 & 8.8650 & \\
-0.3158 & 0.0000 & 4.0995 & 4.7648 & 8.7656
\end{tabular}

\subsection*{14.4.12 The .vvp file}

The .vvp file contains the inverse of the average information matrix on the components scale. The file is formatted for reading back under the control of the .pin file described in Chapter 13. The matrix is lower triangular row-wise in the order the parameters are printed in the .asr file. This is nin89a.vvp with the parameter estimates in the order error variance, spatial row correlation, spatial column correlation.
```

Variance of Variance components 3
51.1980
0.217689 0.317838E-02
0.673382E-01 -0.201115E-02 0.649673E-02

```

\subsection*{14.5 ASReml output objects and where to find them}

Table 14.2 presents a list of objects produced with each ASReml run and where to find them in the output files.

Table 14.2: ASReml output objects and where to find them
\begin{tabular}{lll} 
output object & found in & comment \\
\hline Wald F statistics table & .asr file & \begin{tabular}{l} 
This table contains Wald F statistics for each term in the \\
fixed part of the model. These provide for an incremen- \\
tal or optionally a conditional test of significance (see \\
Section 6.11).
\end{tabular}
\end{tabular}

\subsection*{14.5 ASReml output objects and where to find them}

Table 14.2: Table of output objects and where to find them ASReml
\begin{tabular}{|c|c|c|}
\hline output object & found in & comment \\
\hline data summary & \begin{tabular}{l}
. asr file \\
.ass file
\end{tabular} & \begin{tabular}{l}
includes the number of records read and retained for analysis, the minimum, mean, maximum, number of zeros, number of missing values per data field, factor/variate field distinction. \\
An extended report of the data is written to the . ass file if the !SUM qualifier is specified. It includes cell counts for factors, histograms of variates and simple correlations among variates
\end{tabular} \\
\hline eigen analysis & .res file & When ASReml reports a variance matrix to the .asr file, it also reports an eigen analysis of the matrix (eigen values and eigen vectors) to the .res file. \\
\hline elapsed time & .asr file .asl file & this can be determined by comparing the start time with the finishing time. \\
\hline & & The execution times for parts of the Iteration process are written to the .asl file if the ! DEBUG ! LOGFILE command line qualifiers are invoked. \\
\hline fixed and random effects & . sln file & if ! BRIEF -1 is invoked, the effects that were included in the dense portion of the solution are also printed in the .asr file with their standard error, a t-statistic for testing that effect and a t-statistic for testing it against the preceding effect in that factor. \\
\hline heritability & . pvc file & placed in the .pvc file when postprocessing with a .pin file \\
\hline histogram of residuals & .res file & and graphics file \\
\hline intermediate results & .asl file & given if the -DL command line option is used. \\
\hline mean/variance relationship & .res file & for non-spatial analyses ASReml prints the slope of the regression of \(\log (a b s(r e s i d u a l))\) against \(\log\) (predicted value). This regression is expected to be near zero if the variance is independent of the mean. A power of the mean data transformation might be indicated otherwise. The suggested power is approximately (1-b) where \(b\) is the slope. A slope of 1 suggests a log transformation. This is indicative only and should not be blindly applied. Weighted analysis or identifying the cause of the heterogeneity should also be considered. This statistic is not reliable in genetic animal models or when units is included in the linear model because then the predicted value includes some of the residual. \\
\hline
\end{tabular}

\subsection*{14.5 ASReml output objects and where to find them}

\section*{Table 14.2: Table of output objects and where to find them ASReml}
\begin{tabular}{|c|c|c|}
\hline output object & found in & comment \\
\hline observed variance/ covariance matrix formed from BLUPs and residuals & .res file & for an interaction fitted as random effects, when the first [outer] dimension is smaller than the inner dimension less 10, ASReml prints an observed variance matrix calculated from the BLUPs. The observed correlations are printed in the upper triangle. Since this matrix is not well scaled as an estimate of the underlying variance component matrix, a rescaled version is also printed, scaled according to the fitted variance parameters. The primary purpose for this output is to provide reasonable starting values for fitting more complex variance structure. The correlations may also be of interest. After a multivariate analysis, a similar matrix is also provided, calculated from the residuals. \\
\hline phenotypic variance & .pvc file & placed in the .pvc file when postprocessing with a . pin file \\
\hline plot of residuals against field position & graphics file & \\
\hline possible outliers & .res file & these are residuals that are more than 3.5 standard deviations in magnitude \\
\hline predicted (fitted) values at the data points & . yht file & these in the are printed in the second column \\
\hline predicted values & . pvs file & given if a predict statement is supplied in the .as file. \\
\hline REML log-likelihood & .asr file & the REML log-likelihood is given for each iteration. The REML log-likelihood should have converged \\
\hline residuals & . yht file & and in binary form in .dpr file; these are printed in column 3. Furthermore, for multivariate analyses the residuals will be in data order (traits within records). However, in a univariate analysis with missing values that are not fitted, there will be fewer residuals than data records - there will be no residual where the data was missing so this can make it difficult to line up the values unless you can manipulate them in another program (spreadsheet). \\
\hline score & .asl file & given if the -DL command line option is used. \\
\hline tables of means & \begin{tabular}{l}
.tab file \\
.pvs file
\end{tabular} & simple averages of cross classified data are produced by the tabulate directive to the .tab file. Adjusted means predicted from the fitted model are written to the .pvs file by the predict directive. \\
\hline variance of variance parameters & .vvp file & based on the inverse of the average information matrix \\
\hline variance parameters & \begin{tabular}{l}
.asr file \\
.res file
\end{tabular} & the values at each iteration are printed in the .res file. The final values are arranged in a table, printed with labels and converted if necessary to variances. \\
\hline variogram & graphics file & \\
\hline
\end{tabular}

\subsection*{14.5 ASReml output objects and where to find them}

Table 14.2: Table of output objects and where to find them ASReml
output object found in comment

\section*{15 Error messages}

\subsection*{15.1 Introduction}

Identifying the reason that ASReml does not produce the anticipated results can be a frustrating business. This chapter aims to assist you by discussing four kinds of errors. If ASReml does not run at all, it is a setup or licensing issue which is not discussed in this chapter. It is hoped that the new syntax for variance structure specification will reduce the incidence of coding errors.

Even when the job appears to run successfully, you should check that
- the records read/lines read/records used are correct,
- mean min max information is correct for each variable,
- the Loglikelihood has converged and the variance parameters are stable,
- the fixed effects have the expected degrees of freedom.

Coding errors can be classified as
- typing errors: these are difficult to resolve because we tend to read what we intended to type, rather than what we actually typed. Section 15.4 demonstrates the consequences of the common typographical errors that users make.
- wrong coding: this arises often from misunderstanding the guide or making assumptions arising from past experience which are not valid for ASReml. The best strategy here is to closely follow a worked example, or to build up to the required model. Sections 15.3 and 15.2 may help as well as reviewing all the relevant sections of this Guide. It may be as simple as adding or deleting a space, inserting a comma, changing case or adding one more qualifier.
- inappropriate model: the variance model you propose may not be suited to the data in which case ASReml may fail to produce a solution. You can verify the model is appropriate by closer examination of the structure of the data and by fitting simpler models.

\subsection*{15.2 Common problems}
- software problems: There are many options in ASReml and some combinations have not been tested. Some jobs are too big. When all else fails, describe your problem to the forum http://www.vsni.co.uk/forum or email support@vsni.cu.uk.

There are over 6000 one line diagnostic messages that ASReml may print in the .asr file. Hopefully, most are self explanatory, but it will always be helpful to recognise whether they relate to parsing the input file, or raise some other issue. See Section 15.5 for more information on these messages.

\subsection*{15.2 Common problems}

Common problems in coding ASReml are as follows:
- a variable name has been misspelt; variable names are case sensitive,
- a model term has been misspelt; model term functions and reserved words (mu, Trait, mv, units) are case sensitive,
- the data file name is misspelt or the wrong path has been given - enclose the pathname in quotes (') if it includes embedded blanks,
- a qualifier has been misspelt or is in the wrong place,
- failure to use commas appropriately in model definition lines,
- there is an error in the predict statement,
- model term mv not included in the model when there are missing values in the data and the model fitted assumes all data is present.
- there is an inconsistency between the variance header line and the structure definition lines presented (original syntax),
- there is an error in the R structure definition lines,
- there is an error in the G structure definition lines,
- there is a factor name error,
- there is a missing parameter,
- there are too many/few initial values,

The most common problem in running ASReml is that a variable label is misspelt.

\subsection*{15.2 Common problems}

The primary file to examine for diagnostic messages is the .asr file. When ASReml finds something atypical or inconsistent, it prints an diagnostic message. If it fails to successfully parse the input, it dumps the current information to the .asr file. Below is the output for a job that has been terminated due to an coding error. If a job has an error you should
- read the whole .asr file looking at all messages to see whether they identify the problem,
- focus particularly on any error message in the Fault: line and the text of the Last line read: (this line appears twice in the file to make it easier to find),
- check that all variables have been defined and are referenced with the correct case,
- some errors arise from conflicting information; the error may point to something that appears valid but is inconsistent with something earlier in the file,
- reduce to a simpler model and gradually build up to the desired analysis - this should help to identify the exact location of the problem.

If the problem is not resolved after these checks, you may need to email Customer Support at support@asreml.co.uk. Please send the .as file, (a sample of) the data, the .asr file and the .asl file produced by the debug options (-dl) running
asreml -dl basename.as

In this chapter we show some of the common coding problems. The code box on the right shows our familiar job modified to generate 8 faults. Following is the output from running this job.
```

NIN Alliance Trial }198
variety *
id pid raw
repl *
nloc yield
lat long
row * column *
nin9.asd !slip 1
yield ~ mu variety
!R Repl
residual ar1(Row).ar1(Col)
predict varierty

```
```

ASReml 4.1 [01 Apr 2014] NIN alliance trial }198
Build kt [21 Apr 2014] 64 bit Windows x64
23 Apr 2014 09:16:54.727 32 Mbyte ninerr1
Folder: C:\Users\Public\ASReml\Docs\Manex4\ERR
There is no file called nin9.asd
Variable names may not include "."
Warning: Unrecognised qualifier at character 10 nin9.asd ! ... !SLIP 1 }1
Error: Failed to recognise a data file!
Check spelling of filename and enclose the name in quotes.
Fault: Error parsing yield ~ mu variety
Last line read was: yield ~ mu variety
Currently defined structures, COLS and LEVELS

```

\subsection*{15.4 An example}
```

 1 variety
 2 id
 3 pid
 4 \text { raw}
 5 repl
 nloc
 yield
 8 lat
 9 long
 10 row
1 1 column 1 2
ninerr1 C:\Users\Public\ASReml\Docs\Manex4\ERR
11 factors defined [max5000].
O variance parameters [max2500]. 2 special structures
Last line read was: yield ~ mu variety
Finished: 23 Apr 2014 09:16:54.931 Error parsing yield ~ mu variety

```

ASReml happily reads down to the nin9. asd line. This name contains a '.' which is not permitted in a variable name so nin9. asd is expected to be a file name, but there is no such file in the working folder. The data file is actually nin89.asd.

\subsection*{15.3 Things to check in the . asr file}

The information that ASReml dumps in the .asr file when an error is encountered is intended to give you some idea of the particular error:
- if there is no data summary, ASReml has failed before or while reading the model line,
- if ASReml has completed one iteration the problem is probably associated with starting values of the variance parameters or the logic of the model rather than the syntax per se.

\subsection*{15.4 An example}

Briefly, the 8 coding errors in the example above, in the order they will be detected, are:
1. filename misspelt; there is no file nin9. asd in the working folder,
2. unrecognised qualifier (should be !SKIP),
3. 'Variety' has alphabetic level labels but not declared has such; ! A required,
4. comma missing from first line of model; ! R Repl is part of the model but not recognised as such,
5. misspelt variable label in linear model; Repl should be repl,
6. misspelt variable labels in residual model

\subsection*{15.4 An example}
7. the data has missing cells with respect to the declared residual structure,
8. misspelt variable label in predict; statement (varierty should be variety).

\section*{1. Data file not found}

Running this job produces the .asr file in Section 15.1. The first problem is that ASReml cannot find a data file nin9.asd in the current working folder as indicated in the error message above the Fault line. Since nin9.asd contains a '.' which is not permitted in variable names, ASReml checks for a file of this name (in the working directory since no path is supplied). But ASReml did not find a file with this name. ASReml cannot tell whether the filename is misspelt or that an invalid variable name has been specified. In this case the data file was given as nin9. asd rather than nin89.asd. However, ASReml kept going and read the model line which it recognised because of the \(\sim\) character. The message Fault: Error parsing yield \(\sim\) mu variety does not mean that the error is in the model yield ~ mu variety but that it recognised this as the model line and gave up because it had not encountered a valid data file line.

The message
Warning: Unrecognised qualifier at character 10 nin9.asd ! ... !SLIP 1
simply indicates that the qualifier !SLIP 1 has not been processed.

\section*{2. An unrecognised qualifier}

After correcting the filename, we get the following (abbreviated) output. The problem is that ! SKIP 1, which would cause ASReml to skip the first line of the data file, was mistyped as !SLIP 1 which ASReml failed to recognise and ignored. But then it was unable to read the first line of the data file.
```

NIN Alliance Trial 1989
variety *
row * column *
nin89.asd !slip 1
yield ~ mu variety
!R Repl
residual ar1(Row).ar1(Col)
predict varierty

```
```

Folder: C:\Users\Public\ASReml\Docs\Manex4\ERR
QUALIFIERS: !SLIP 1
Warning: Unrecognised qualifier at character 11 !SLIP 1
Reading nin89.asd FREE FORMAT skipping 0 lines
Univariate analysis of yield
Notice: Maybe you want !A !L qualifiers for this factor: variety
Error at field 1 [variety] of record 1 [line 1]
Since this is the first data record, you may need to skip some header lines
(see !SKIP) or append the !A qualifier to the definition of factor variety
Fault: Missing/faulty !SKIP or !A needed for variety
Last line read was: variety id pid raw rep nloc yield lat long row column
Currently defined structures, COLS and LEVELS
1 variety
1 0 row

```

\subsection*{15.4 An example}
```

1 1 ~ c o l u m n ~
12 mu 0
1 2 2 2 0 0
ninerr2 nin89.asd
Model specification: TERM LEVELS GAMMAS
mu
0
variety
0
12 factors defined [max5000].
O variance parameters [max2500]. 2 special structures
Last line read was: variety id pid raw rep nloc yield lat long row column
Finished: 23 Apr 2014 09:17:01.765 Missing/faulty !SKIP or !A needed for variety

```

\section*{3. An incorrectly defined factor}

After correcting !slip 1 to !skip 1, we get the following (abbreviated) output. The problem is that variety is coded in the data file with alphabetic level names but ASReml is expecting integer level codes. Changing the variety * line to read variety !A resolves this problem.
```

NIN Alliance Trial }198
variety *
...
row * column *
nin89.asd !skip 1
yield ~ mu variety
!R Repl
residual ar1(Row).ar1(Col)
predict varierty

```
```

Folder: C:\Users\Public\ASReml\Docs\Manex4\ERR
QUALIFIERS: !SKIP 1
Reading nin89.asd FREE FORMAT skipping 1 lines
Univariate analysis of yield
Notice: Maybe you want !A !L qualifiers for this factor: LANCER
Error at field 1 [LANCER] of record 1 [line 1]
Since this is the first data record, you may need to skip some header lines
(see !SKIP) or append the !A qualifier to the definition of factor variety
Fault: Missing/faulty !SKIP or !A needed for variety
Last line read was: LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1
Currently defined structures, COLS and LEVELS
1 variety
11 column 1
12 mu (0 cllllll
ninerr3 variety id pid raw rep nloc yield lat
Model specification: TERM LEVELS GAMMAS
mu 0
variety 0
12 factors defined [max5000].
O variance parameters [max2500]. 2 special structures
Last line read was: LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1
Finished: 23 Apr 2014 09:17:05.540 Missing/faulty !SKIP or !A needed for variety

```

\subsection*{15.4 An example}

\section*{4. A missing comma}

After correcting the definition of variety, we get the following (abbreviated) output. We have at least now read the data file as indicated by the data summary. You should always check the data summary to ensure that the correct number of records have been detected and the data values match the names appropriately.
```

NIN Alliance Trial 1989
variety !A
row * column *
nin89.asd !skip 1
yield ~ mu variety
!R Repl
residual ar1(Row).ar1(Col)
predict varierty

```

The problem is that \(!R\) Repl is meant to be part of the linear model, but it is on a separate line, and the first part of the model on the preceding line does not end with a COMMA to indicate that the model is incomplete. Appending a comma to the first model line resolves this problem.
```

Folder: C:\Users\Public\ASReml\Docs\Manex4\ERR
variety !A
QUALIFIERS: !SKIP 1
Reading nin89.asd FREE FORMAT skipping 1 lines
Univariate analysis of yield
Summary of 224 records retained of 224 read

Model term	Size \#miss	\#zero	MinNon0	Mean	MaxNon0	StndDevn	
1 variety	56	0	0	1	28.5000	56	
2 id		0	0	1.000	28.50	56.00	16.20
3 pid		0	0	1101.	2628.	4156.	1121.
4 raw		0	0	21.00	510.5	840.0	149.0
5 repl	4	0	0	1	2.5000	4	
6 nloc		0	0	4.000	4.000	4.000	0.000
7 yield	Variate	0	0	1.050	25.53	42.00	7.450
8 lat		0	0	4.300	27.22	47.30	12.90
9 long		0	0	1.200	14.08	26.40	7.698
10 row	22	0	0	1	11.7321	22	
11 column	11	0	0	1	6.3304	11	
12 mu			1				

QUALIFIERS: !R Repl
Fault: Error in variance header line: !R Repl
Last line read was: !R Repl 0 0 0 0
ninerr4 variety id pid raw rep nloc yield lat
Model specification: TERM LEVELS GAMMAS
variety 56
mu 1
12 factors defined [max5000].
O variance parameters [max2500]. 2 special structures
Final parameter values [2: 0]
Last line read was: !R Repl 0 0 0 0
Finished: 23 Apr 2014 09:17:08.861 Error in variance header line: !R Repl

```

\subsection*{15.4 An example}

\section*{5. A misspelt factor name in linear model.}

After correcting the definition of variety, we get the following (abbreviated) output. Now it has failed to parse the model line because the model term Repl was declared as repl and so is unrecognised. Changing Repl to repl (or vice versa) resolves this problem.
```

NIN Alliance Trial 1989
variety !A
id pid raw
repl *
row * column
nin89.asd !skip 1
yield ~ mu variety ,
!R Repl
residual ar1(Row).ar1(Col)
predict varierty

```
Folder: C:\Users \Public \(\backslash\) ASReml \Docs \(\backslash\) Manex \(4 \backslash E R R\)
variety !A
QUALIFIERS: !SKIP 1
Reading nin89.asd FREE FORMAT skipping 1 lines
Model term "Repl" is not valid/recognised.
Fault: Error reading model terms
    Last line read was: Repl
    Currently defined structures, COLS and LEVELS
        1 variety 1
        \(\begin{array}{llllllll}2 \text { id } & 1 & 1 & 1 & 0 & 1 & 0\end{array}\)
        3 pid \(\begin{array}{lllllll}1 & 1 & 1 & 0 & 2 & 0\end{array}\)
        4 raw
        \(\begin{array}{llllll}1 & 1 & 1 & 0 & 3 & 0\end{array}\)
        5 repl
            12
. . .
    \(12 \mathrm{mu} \quad \begin{array}{lllllll}0 & 1 & -8 & 0 & -1 & 0\end{array}\)
ninerr5 variety id pid raw rep nloc yield lat
    Model specification: TERM LEVELS GAMMAS
mu 0
variety 0
        12 factors defined [max5000].
        0 variance parameters [max2500]. 2 special structures
    Last line read was: Repl
Finished: 23 Apr 2014 09:17:15.785 Error reading model terms

\subsection*{15.4 An example}

\section*{6. Misspelt factor name in RESIDUAL declaration}

After correcting the spelling of Repl, we get the following (abbreviated) output. The problem here is essentially the same as error 5. The spatial residual model was declared using Row and Col but the relevant variables are in fact row and column. Note that, in this case column could be truncated to col in the model formulae as this does not cause any ambiguity but often it is clearer to use the full variable name.
```

NIN Alliance Trial 1989
variety !A
id pid raw
repl *
row * column *
nin89.asd !skip 1
yield ~ mu variety ,
!R repl
residual ar1(Row).ar1(Col)
predict varierty

```

Summary of 224 records retained of 224 read


\subsection*{15.4 An example}

\section*{7. Missing plots in field layout}

The variables row and column define a \(22 \times 11\) grid, that is 242 plots, but there are only 224 plots in the data. We could manually work out which are missing, and construct extra data lines to complete the grid, but ASReml will do this for us if we add the qualifiers !ROWFAC row !COLFAC column
and add the model term mv to estimate missing values for the missing plots. So this problem is resolved by changing the model lines to
```

NIN Alliance Trial }198
variety !A
id pid raw
repl *
row * column *
nin89.asd !skip 1
yield ~ mu variety ,
!r repl
residual ar1(row).ar1(col)
predict varierty

```
read
nin89.asd !skip 1
!ROWFAC row !COLFAC column
yield ~ mu variety mv !R repl
residual ar1(row).ar1(col)

This output also flags the 8th error which is the misspelling of variety in the predict line. That error does not stop the job running, but does mean the predicted means for variety will not be formed.
```

QUALIFIERS: !SKIP 1
Reading nin89.asd FREE FORMAT skipping 1 lines
...
1 2 ~ m u ~ 1 ~
ar1(row) in ar1(row).ar1(col) has size 22, parameters: 5 5
ar1(col) in ar1(row).ar1(col) has size 11, parameters: 6 6
ar1(row).ar1(col) [4: 6] initialized.
Forming 61 equations: 57 dense.
Initial updates will be shrunk by factor 0.400
Notice: Invalid argument, unrecognised qualifier or
vector space exhausted at 'varierty '
Error: R structures do not match records in data.
Error: Spatial Layout is not rectangular grid
Fault: Variance structure does not match data
Last line read was: !STOP
ninerr7 variety id pid raw rep nloc yield lat
Model specification: TERM LEVELS GAMMAS
variety 56
mu 1
repl 4 0.100 [3]
SECTIONS
STRUCT
15 factors defined [max5000].
6 variance parameters [max2500]. 2 special structures
Final parameter values [3: 6] 0.10000 1.0000 0.10000

```

\subsection*{15.5 Information, Warning and Error messages}
0.10000

Last line read was: !STOP
Finished: 23 Apr 2014 09:17:23.354 Variance structure does not match data

\section*{8. A misspelt factor name in the predict statement}

The final error in the job is that a factor name is misspelt in the predict statement. This is a non-fatal error. The .asr file contains the messages
Notice: Invalid argument, unrecognised qualifier or vector space exhausted at 'voriety ,
Warning: Extra lines on the end of the input file are ignored from predict varierty
The faulty statement is otherwise ignored by ASReml and no .pvs file is produced. To rectify this statement correct varierty to variety.

\subsection*{15.5 Information, Warning and Error messages}

ASReml prints information, warning and error messages in the .asr file. The major information messages are in Table 15.1. A list of warning messages together with the likely meaning(s) is presented in Table 15.2. Other error messages with their probable cause(s) is presented in Table 15.3.

Not all messages are listed here. If not, identify whether the problem is syntactical (as in the previous section), whether it is a processing problem (the job starts to process but does not complete) or a reporting problem:
- for a syntax problem, note that the actual problem may be in an earlier line, and the current message is indicating an inconsistency with what ASReml has already read. Scan the output for other messages which might indicate the problem. If the problem is not evident, simplify the job until the simpler version runs and then build back to the required model. Remember that the model statement is parsed before the data file is read, but any following statements (e.g. residual, predict ) are parsed after the data is read.
- processing errors are indicated if the .asr file contains lines like

Forming 18211 equations: 42 dense.
Initial updates will be shrunk by factor 0.316
Simple things to try are increasing ! WORKSPACE and simplifying the model.
- reporting problems are indicated if the LogL has converged or ASReml has completed the specified number of iterations.

Do not hesitate to seek help on the forum and to report problems to support@vsni.co.uk. Often a simple solution is available.

Table 15.1: Some information messages and comments
\begin{tabular}{|c|c|}
\hline information message & comment \\
\hline Logl converged & the REML log-likelihood last changed less than 0.002 * iteration number and variance parameter values appear stable. \\
\hline BLUP run done & A full iteration has not been completed. See discussion of ! BLUP. \\
\hline JOB ABORTED by USER & See discussion of ABORTASR.NOW. \\
\hline Logl converged, parameters not converged & the change in REML log-likelihood was small and convergence was assumed but the parameters are, in fact, still changing. \\
\hline Logl not converged & the maximum number of iterations was reached before the REML log-likelihood converged. The user must decide whether to accept the results anyway, to restart with the ! CONTINUE command line option (see Section 11.3 on job control), or to change the model and/or initial values before proceding. The sequence of estimates is reported in the .res file. It may be necessary to simplify the model and estimate the dominant components before estimating other terms if the LogL is oscilating. \\
\hline Warning: Only one iteration performed & Parameter values are not at the REML solution. \\
\hline Parameters unchanged after one iteration. & Parameters appear to be at the REML solution in that the parameter values are stable. \\
\hline
\end{tabular}

Messages beginning with the word Notice: are not generally listed here. They provide information the user should be aware of as it may affect the interpretation of results. They are not in themselves errors in that the syntax is valid, but they may reflect errors in the sense that the user may have intended something different.

Messages beginning with the word Warning: highlight information that the user should check. Again, it may reflect an error if the user has intended something different.

Messages beginning with the word Error: indicate that something is inconsistent as far as ASReml is concerned. It may be a coding error that the user can fix easily, or a processing error which will generally be harder to diagnose. Often, the error reported is a symptom of something else being wrong.

Table 15.2: List of warning messages and likely meaning(s)
warning message likely meaning

Notice: ASReml has merged design points closer than
```

Warning: e missing

```
values generated by ! -
transformation
Warning: \(i\) singularities in
AI matrix
Warning: \(m\) variance
structures were modified
Warning: \(n\) missing values
were detected in the design
Warning: \(n\) negative weights
Warning: \(r\) records were read
from multiple lines
WARNING term has more levels
[ \#\# ] than expected [ \#\# ]:
Warning: term in the predict
!IGNORE list
Warning: term in the predict
!USE list
Warning: term is ignored for
prediction
Warning: Check if you need
the !RECODE qualifier
Warning: Code B - fixed at a
boundary (!GP)
Warning: Dropped records
were not evenly distributed
across
Warning: Eigen analysis
check of US matrix skipped
WARNING: Extra lines on the
end of the input file...:

This is to reduce the number of knot points used in fitting a spline.
data values should be positive.
usually means the variance model is overparameterized. Look up !AISING.
the structures are probably at the boundary of the parameter space.
either use ! MVINCLUDE or delete the records.
it is better to avoid negative weights unless you can check ASReml is doing the correct thing with them.
check the data summary has the correct number of records, and all variables have valid data values. If ASReml does not find sufficient values on a data line, it continues reading from the next line.
You have probably mis-specified the number of levels in the factor or omitted the !I qualifier (see Section 5.4 on data field definition syntax). ASReml corrects the number of levels.
the term did not appear in the model.
the term did not appear in the model.
terms like units and mv cannot be included in prediction.
! RECODE may be needed when using a pedigree and reading data from a binary file that was not prepared with ASReml. suggest drop the term and refit the model.
! MVREMOVE has been used to delete records which have a missing value in design variables. This has resulted in multivariate data no longer having an \(n \times t\) ( \(n\) subjects with \(t\) traits each) structure. This will be a problem if the R structure model assumes \(n \times t\) data structure.
the matrix may be OK but ASReml has not checked it.
this indicates that there are some lines on the end of the .as file that were not used. The first "extra" line is displayed. This is only a problem if you intended ASReml to read these lines.

\subsection*{15.5 Information, Warning and Error messages}

Table 15.2: List of warning messages and likely meaning(s)
warning message likely meaning

Warning: Failed to find header blocks to skip.

Warning: Fewer levels found in term

Warning: FIELD DEFINITION lines should be INDENTED

Warning: Fixed levels for factor

Warning: Initial gamma value is zero

Warning: Invalid argument.
Warning: It is usual to include Trait in the ... model

Warning: LogL Converged; Parameters Not Converged

Warning: LogL not converged
Notice: LogL values are reported relative to a base of

Warning: Missing cells in table

Warning: More levels found in term

Warning: PREDICT LINE
IGNORED - TOO MANY
Warning: PREDICT statement
is being ignored
Warning: Second occurrence of term dropped

Warning: Spatial mapping information for side
Warning: Standard errors
Warning: SYNTAX CHANGE: text may be invalid

Warning: The !A qualifier ignored when reading BINARY data

Warning: The !SPLINE qualifier has been redefined.

The ! RSKIP qualifier requested skipping header blocks which were not present.

ASReml increases to the correct value.
indent them to avert this message.
user nominated more levels than are permitted.
constraint parameter is probably wrongly assigned.
fix the argument.
The model term Trait was not present in the multivariate analysis model.
you may need more iterations.
restart to do more iterations (see !CONTINUE).
The computed LogL value is occasionally very large in magnitude, but our interest is in relative changes. Reporting relative to an offset ensures that differences at the units level are apparent.
missing cells are normally not reported.
consider setting levels correctly.
the limit is 100 PREDICT statements.
because it contains errors.
if you really want to fit this term twice, create a copy with another name.
gives details so you can check ASReml is doing what you intend.
that is, these standard errors are approximate.
use the correct syntax.
the ! A fields will be treated as factors but are coded as they appear in the binary file.
use correct syntax.

Table 15.2: List of warning messages and likely meaning(s)
warning message

Warning: The ! X ! Y ! G
qualifiers are ignored. There is no data to plot

Warning: Warning: The
default action with missing
values in multivariate data

Warning: The estimation was ABORTED

Warning: The FOWN test of ... is not calculated ...

Warning: The labels for predictions are erroneous

Warning: This US structure is not positive definite

Warning: Unrecognised
qualifier at character
Warning: US matrix was not positive definite: MODIFIED

Warning: User specified
spline points
Warning: Variance parameters
were modified by BENDing
Warning: Likelihood
decreased. Check gammas and singularities.:
likely meaning
revise the qualifier arguments.

The issue is to match the declared R structure to the physical data. Dropping observations which are missing will often usually destroy the pattern. Estimating missing values allows the pattern to be retained.
Do not accept the estimates printed.

The FOWN test requested is not calculated because it results in different numbers of degrees of freedom to that obtained for the incremental tests for the terms in the model as fitted; the FOWN calculations are based on the reduced design matrix formed for the incremental model. ASReml performs the standard conditional test instead. The user must reorder (swap?) the terms in the model specification and rerun the job to perform the requested FOWN test.
the labels for predicted terms are probably out of kilter. Try a simpler predict statement. If the problem persists, send for help.
check the initial values.
the qualifier either is misspelt or is in the wrong place.
the initial values were modified by a 'bending' process.
the points have been rescaled to suit the data values.

ASReml may not have converged to the best estimate.
a common reason is that some constraints have restricted the gammas. Add the !GU qualifier to any factor definition whose gamma value is approaching zero (or the correlation is approaching (-)1. Alternatively, more singularities may have been detected. You should identify where the singularities are expected and modify the data so that they are omitted or consistently detected. One possibility is to centre and scale covariates involved in interactions so that their standard deviation is close to 1 .

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies
\begin{tabular}{|c|c|}
\hline error message & probable cause/remedy \\
\hline \begin{tabular}{l}
!COLFAC confusion \\
!ROWFAC confusion
\end{tabular} & !COLFAC/!ROWFAC arguments contradict RESIDUAL statement order. If the variables have the correct names, reverse the order. \\
\hline !PRINT: Cannot open output file & Check filename. \\
\hline !SUBSECTION not permitted & This variance structure qualifier is only permitted in single section RESIDUAL structures. \\
\hline AINV/GIV matrix undefined or wrong size & Check the size of the factor associated with the AINV/GIV structure. \\
\hline ALNORM Error & ALNORM calculates the Normal Integral \\
\hline Apparent error in pedigree relationships & ASReml failed to !SORT the pedigree. \\
\hline ASReml command file is EMPTY: & The job file should be in ASCII format. \\
\hline ASReml failed in & Try running the job with increased workspace, or using a simpler model. Otherwise send the job to VSN (mailto:support@asreml.co.uk) for investigation. \\
\hline at() string too long & ASReml failed to expand the at() model term string. Break it into several parts on separate lines. \\
\hline Badly formed model term. & ASReml failed to parse the term. Revise and simplify. \\
\hline CALC ?? reference to large. & An argument in the CALC statement is not valid. \\
\hline Check IDV structure. & ASReml is using IDV variance structure but wonders whether that is what you intended. \\
\hline \begin{tabular}{l}
Context of read error \\
Data Error: At record...
\end{tabular} & ASReml found a alphacharacters when it was expecting numeric data. Either the variable should be declared alphanumeric, or we have miscounted items on the line. Use !CSV if there are TAB or COMMA delimited blank lines. \\
\hline Continue from .rsv file & Try running without the ! CONTINUE qualifier. \\
\hline Convergence failed & \begin{tabular}{l}
the program did not proceed to convergence because the REML log-likelihood was fluctuating wildly. One possible reason is that some singular terms in the model are not being detected consistently. Otherwise, the updated G structures are not positive definite. There are some things to try: \\
- define US structures as positive definite by using ! GP, \\
- supply better starting values, \\
- fix parameters that you are confident of while getting better estimates for others (that is, fix variances when estimating covariances), \\
- fit a simpler model, \\
- reorganise the model to reduce covariance terms (for example, use CORUH instead of US.)
\end{tabular} \\
\hline
\end{tabular}

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies
\begin{tabular}{|c|c|}
\hline error message & probable cause/remedy \\
\hline Correlation structure is not positive definite & It is best to start with a positive definite correlation structure. Maybe use a structured correlation matrix. \\
\hline Data does not have \# sections. & The data does not match the RESIDUAL specification. \\
\hline Define structure for & A variance structure should be specified for this term. \\
\hline Error: The indicated number of input fields exceeds the limit. & The reported limit is hardcoded. The number of variables to be read must be reduced. \\
\hline Error in !CONTRAST label factor values & The error could be in the variable(factor) name or in the number of values or the list of values. \\
\hline Error in ! GROUP label factor values & The list of values does not agree with the factor definition. \\
\hline Error in !SUBSET label factor values & The error could be in the variable(factor) name or in the number of values or the list of values. \\
\hline Error in extended !ASSIGN & The \(!<!>\) qualifiers allow an assign string to be defined over several lines. Maybe the string is too long. \\
\hline Error in R structure: model checks & the error model is not correctly specified. \\
\hline Error opening file & the file did not exist or was of the wrong file type (binary \(=\) unformatted, sequential). \\
\hline Error in list & The PREDICT statement cannot be parsed. \\
\hline Error in PREDICT & ASReml failed to form the PREDICT design matrix. \\
\hline Error in variance header line. & This usually indicates the model has not been properly parsed and part is misinterpreted as a variance header line (old syntax where the residual statement was expected. When the model statement is written over several lines, incomplete lines must end with a PLUS or COMMA character. \\
\hline Error in Variance Parameter Constraint & Check old syntax variance structure specification. \\
\hline Error opening file. & Check the filename is correct and that the file is not open in another process. \\
\hline Error order & ASReml has failed to determine an order for solving the mixed model equations. See ! EQORDER for some discussion. Try increasing ! WORKSPACE. \\
\hline Error parsing & This error comes from the main read routine! or from the variable definition parsing routine. \\
\hline Error reading something & There are several messages of this form where something is what ASReml is attempting to read. Either there is an error telling ASReml to read something when it does not need to, or there is an error in the way something is specified. \\
\hline
\end{tabular}

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies
\begin{tabular}{|c|c|}
\hline error message & probable cause/remedy \\
\hline Error reading the data: & the data file could not be interpreted: alphanumeric fields need the ! A qualifier. \\
\hline Error reading the DATA FILENAME line & data file name may be wrong \\
\hline Error reading the model factor list & the model specification line is in error: a variable is probably misnamed. \\
\hline Error: Ran out of space to code records to sort them!'/ & Declare the levels in the !ROWFACTOR, !COLUMNFACTOR and !SECTION variables more accurately. \\
\hline Error setting constraints (!VCC) on variance components & The !VCC constraints are specified last of all and require knowing the position of each parameter in the parameter vector. \\
\hline Error setting dependent variable & the specified dependent variable name is not recognised. \\
\hline Error setting MBF design matrix: ! MBF mbf(x,k) filename & It is likely that the covariate values do not match the values supplied in the file. The values in the file should be in sorted order. \\
\hline Error sorting X,Y values & ! ROWFAC and ! COLFAC and !SECTION as well as factors defining a residual structure must uniquely define grid points in the spatial array. \\
\hline Error structures are wrong size: & the declared size of the error structures does not match the actual number of data records. \\
\hline Error when reading knot point values & There is some problem on the ! SPLINE line. It could be a wrong variable name or the wrong number of knot points. Knot points should be in increasing order. \\
\hline Failed forming R/G scores...? & Try increasing workspace. \\
\hline Failed ordering Level labels & The problem may be due to the use of the !SORT qualifier in the data definition section. \\
\hline Failed to find & The PREDICT statement seems in error: the named factor is not present in the model. \\
\hline Failed to open ! INCLUDE & An !INCLUDE file could not be opened. \\
\hline \begin{tabular}{l}
Failed to parse R/G structure line \\
Failed to read R/G structure line
\end{tabular} & May be an unrecognised factor/model-term name or variance structure name or wrong count of initial values, possible on an earlier line. May be insufficient lines in the job. \\
\hline Failed to process MYOWNGDG files & Check your MYOWNGDG program and the .gdg file. \\
\hline Failed when sorting pedigree
... & Maybe increase ! WORKSPACE. Messages may identify a problem with the pedigree. \\
\hline Failed when processing pedigree file ... & \\
\hline
\end{tabular}

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies
\begin{tabular}{|c|c|}
\hline error message & probable cause/remedy \\
\hline Failed while ordering equations. & This indicates the job needs more memory than was allocated or is available. Try increasing the workspace or simplifying the model. \\
\hline FORMAT error reading & \begin{tabular}{l}
Likely causes are \\
- bad syntax or invalid characters in the variable names; variable names must not include any of these symbols; ! \(\mid-+(: \# \$\) and ., \\
- the data file name is misspelt, \\
- there are too many variables declared or there is no valid value supplied with an arithmetic transformation option.
\end{tabular} \\
\hline G-structure header: Factor order: & there is a problem reading G structure header line.An earlier error (for example insufficient initial values) may mean the actual line read is not actually a G header line at all. A G header line must contain the name of a term in the linear model spelt exactly as it appears in the model. \\
\hline G structure: ORDER 0 MODEL GAMMAS : & a G structure line cannot be interpreted. \\
\hline G structure size does not match & The size of the structure defined does not agree with the model term that it is associated with. \\
\hline Getting Pedigree: & an error occurred processing the pedigree. The pedigree file must be ascii, free format with ANIMAL, SIRE and DAM as the first three fields. \\
\hline GLM Bounds failure & ASReml failed to calculate the GLM working variables or weights. Check the data. \\
\hline Increase declared levels for factor ... & Either the field has alphanumeric values but has not been declared using the ! A qualifier, or there is not enough space to hold the levels of the factor. To 'increase the levels', insert the expected number of levels after the ! A or ! I qualifier in the field definition. \\
\hline Increase workspace & Use !WORKSPACE \(s\) to increase the workspace available to ASReml. If the data set is not extremely big, check the data summary. \\
\hline ```
Insufficient data read from
file
``` & Maybe the response variable is all missing. \\
\hline Insufficient points for & there must be at least 3 distinct data values for a spline term \\
\hline Insufficient workspace. & If ASReml has not obtained the maximum available workspace, then use !WORKSPACE to increase it. The problem could be with the way the model is specified. Try fitting a simpler model or using a reduced data set to discover where the workspace is being used. \\
\hline invalid analysis trait number & The response variable nominated by the !YVAR command line qualifier is not in the data. \\
\hline
\end{tabular}

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies
error message probable cause/remedy

Invalid binary data
Invalid Binomial Variable
Invalid definition of factor ...

Invalid error structure for Multivariate Analysis

Invalid factor in model:

Invalid model factor ... :
Invalid SOURCE in \(R\) structure definition

Invalid weight/filter column number:

Iteration aborted because of singularities

Iteration failed
Matern: ...

Maximum number of special structures exceeded

Maximum number of variance parameters exceeded

Missing/faulty !SKIP or !A needed for ...

Missing values in design variables/factors

Missing Value Miscount
forming design
Missing values not allowed here:

Multiple trait mapping problem

The data values are out of the expected range for binary/binomial data.
there is a problem with forming one of the generated factors. The most probable cause is that an interaction cannot be formed.

You must either use the US error structure or use the ! ASUV qualifier (and maybe include mv in the model).
a term in the model specification is not among the terms that have been defined. Check the spelling.
there is a problem with the named variable.
The second field in the R structure line does not refer to a variate in the data.
the weight and filter columns must be data fields. Check the data summary.

See the discussion of !AISINGULARITIES.

Maybe increase workspace or restructure/simplify the model.
Numerical problems calculating the Matérn function. If rescaling the \(X, Y\) cordinates so that the step size is closer to 1.0 does not resolve the issue, try AEXP instead.
special structures are weights, the Ainverse and GIV structures. The limit is 98 and so no more than 96 GIV structures can be defined.

The limit is 1500 . It may be possible to restructure the job so the limit is not exceeded, assuming that the actual number of parameters to be estimated is less.

ASReml failed to read the first data record. Maybe it is a heading line which should be skipped by using the ! SKIP qualifier, or maybe the field is an alphanumeric field but has not been declared so with the ! A qualifier.

You need to identify which design terms contain missing values and decide whether to delete the records containing the missing values in these variables or, if it is reasonable, to treat the missing values as zero by using !MVINCLUDE.
More missing values in the response were found than expected.
missing observations have been dropped so that direct product R structure does not match the multivariate data structure.
Maybe a trait name is repeated.

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies
\(\left.\begin{array}{ll}\text { error message } & \text { probable cause/remedy } \\ \hline \text { Negative Sum of Squares: } & \begin{array}{l}\text { This is typically caused by negative variance parameters; try } \\ \text { changing the starting values or using the !STEP option. If the } \\ \text { problem occurs after several iterations it is likely that the vari- }\end{array} \\ \text { ance components are very small. Try simplifying the model. In } \\ \text { multivariate analyses it arises if the error variance is (becomes) } \\ \text { negative definite. Try specifying !GP on the structure line for }\end{array}\right]\)

PROGRAM failed in ...
This is typically caused by negative variance parameters; try changing the starting values or using the !STEP option. If the problem occurs after several iterations it is likely that the variance components are very small. Try simplifying the model. In negative definite. Try specifying ! GP on the structure line for the error variance.
too many terms are being defined.
Fix the argument to giv().
after fitting the model, the residual variation is essentially zero, that is, the model fully explains the data. If this is intended, use the ! BLUP 1 qualifier so that you can see the estimates. Otherwise check that the dependent values are what you intend en identify which variables explain it. Again, the !BLUP A program limit has been breached. Try simplifying the model. use ! WORKSPACE qualifier to increase the workspace allocation. It may be possible to revise the models to increase sparsity.
factors are probably not declared properly. Check the number of levels. Possibly use the !WORKSPACE qualifier.

The predict table appears to be too big. Try increasng ORKSPACE, or predicting in parts.
occurs when space allocated for the structure table is exceeded. There is room for three structures for each model term for which G structures are explicitly declared. The error might occur when ASReml needs to construct rows of the table for structured解 when the user has not formally declared the structures lncreasing \(g\) on the . increase the space allocated for the table. You will need to add extra explicit declarations also.
check the pedigree fle and see any messages in the output.
the A-inverse factors are not the same size as the A-inverse. Delete the ainverse.bin file and rerun the job.
Typically this arises when there is a problem processing the pedigree file.

Check the details for the distance based variance structure.
Check the distances specified for the distance based variance structure.

Try increasing workspace. Otherwise send problem to VSN.

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies
\begin{tabular}{|c|c|}
\hline error message & probable cause/remedy \\
\hline PROGRAMMING error: & indicates ASReml has failed deep in its core. It is likely to be an interaction between the data and the variance model being fitted. Try increasing the memory, simplifying the model and changing starting values for the gammas. If this fails send the problem to the VSN (mailto:support@asreml.co.uk) for investigation. \\
\hline reading !SELF option & Check the argument. \\
\hline Reading distances for POWER structure & POWER structures are the spatial variance models which require a list of distances. Distances should be in increasing order. If the distances are not obtained from variables, the 'SORT' field is zero and the distances are presented after all the \(R\) and G structures are defined. \\
\hline Reading factor names: & something is wrong in the terms definitions. It could also be that the data file is misnamed. \\
\hline reading Overdispersion factor & Check the argument. \\
\hline READING OWN structures & There is probably a problem with the output from MYOWNGDG. Check the files, including the time stamps to check the .gdg file is being formed properly. \\
\hline Reading the data: & if you read less data than you expect, there are two likely explanations. First, the data file has less fields than implied by the data structure definitions (you will probably read half the expected number). Second, there is an alphanumeric field where a numeric field is expected. \\
\hline Reading Update step size: & check the ! STEP qualifier argument. \\
\hline Residual Variance is Zero: & either all data is deleted or the model fully fits the data. \\
\hline \(R\) header SECTIONS DIMNS GSTRUCT & error with the variance header line. Often, some other error has meant that the wrong line is being interpreted as the variance \\
\hline R structure header SITE DIM GSTRUCT & header line. Commonly, the model is written over several lines but the incomplete lines do not all end with a comma. \\
\hline Variance header: SEC DIM GSTRUCT & \\
\hline R structure error ORDER SORTCOL MODEL GAMMAS: & an error reading the error model. \\
\hline R structures are larger than number of records & Maybe you need to include mv in the model to stop ASReml discarding records with missing values in the response variable. \\
\hline REQUIRE !ASUV qualifier for this \(R\) structure REQUIRE I x E R structure & Without the ASUV qualifier, the multivariate error variance MUST be specified as US. \\
\hline Scratch: & Apparently ASReml could not open a scratch file to hold the transformed data. On unix, check the temp directory \(/ / \mathrm{tmp}\) for old large scratch files. \\
\hline
\end{tabular}

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies
error message probable cause/remedy
\begin{tabular}{ll}
Segmentation fault: & \begin{tabular}{l}
this is a Unix memory error. It typically occurs when a mem- \\
ory address is outside the job memory. The first thing to try is \\
to increase the memory workspace using the !WORKSPACE (see
\end{tabular} \\
& \begin{tabular}{l}
Section 11.3 on memory) command line option. Otherwise you \\
may need to send your data and the .as files to Customer Sup- \\
port for debugging.
\end{tabular} \\
Singularity appeared in AI & See the discussion on !AISINGULARITIES
\end{tabular}

\subsection*{15.5 Information, Warning and Error messages}

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies
error message probable cause/remedy
\begin{tabular}{ll}
Variance structure is not & \begin{tabular}{l}
Use better initial values or a structured variance matricx that \\
is positive definite.
\end{tabular} \\
positive definite & YFA model not permitted in \(R\)
\end{tabular} \begin{tabular}{l}
You may use FA or FACV. The \(R\) structure must be positive \\
definite. \\
structures \\
XFA may not be used as an R
\end{tabular}

\section*{16 Examples}

\subsection*{16.1 Introduction}

In this chapter we present the analysis of a variety of examples. The primary aim is to illustrate the capabilities of ASReml in the context of analysing real data sets. We also discuss the output produced by ASReml and indicate when problems may occur. Statistical concepts and issues are discussed as necessary but we stress that the analyses are illustrative, not prescriptive.

\subsection*{16.2 Split plot design - Oats}

The first example involves the analysis of a split plot design originally presented by Yates (1935). The experiment was conducted to assess the effects on yield of three oat varieties (Golden Rain, Marvellous and Victory) with four levels of nitrogen application (0, 0.2, 0.4 and \(0.6 \mathrm{cwt} /\) acre). The field layout consisted of six blocks (labelled I, II, III, IV, V and VI) with three whole-plots each split into four sub-plots. The three varieties were randomly allocated to the three whole-plots while the four levels of nitrogen application were randomly assigned to the four sub-plots within each whole-plot. The data is presented in Table 16.1.

Table 16.1: A split-plot field trial of oat varieties and nitrogen application
\begin{tabular}{|ll|rrrr|}
\hline & & \multicolumn{4}{|c|}{ nitrogen } \\
block & variety & 0.0 cwt & 0.2 cwt & 0.4 cwt & 0.6 cwt \\
\hline & GR & 111 & 130 & 157 & 174 \\
I & M & 117 & 114 & 161 & 141 \\
& V & 105 & 140 & 118 & 156 \\
\hline \multirow{3}{*}{ II } & GR & 61 & 91 & 97 & 100 \\
& M & 70 & 108 & 126 & 149 \\
& V & 96 & 124 & 121 & 144 \\
\hline \multirow{3}{*}{ III } & GR & 68 & 64 & 112 & 86 \\
& M & 60 & 102 & 89 & 96 \\
& V & 89 & 129 & 132 & 124 \\
\hline & GR & 74 & 89 & 81 & 122 \\
& M & 64 & 103 & 132 & 133 \\
& V & 70 & 89 & 104 & 117 \\
\hline \multirow{3}{*}{ V } & GR & 62 & 90 & 100 & 116 \\
& M & 80 & 82 & 94 & 126 \\
& V & 63 & 70 & 109 & 99 \\
\hline \multirow{3}{*}{ VI } & GR & 53 & 74 & 118 & 113 \\
& M & 89 & 82 & 86 & 104 \\
& V & 97 & 99 & 119 & 121 \\
\hline
\end{tabular}

\subsection*{16.2 Split plot design - Oats}

A standard analysis of these data recognises the two basic elements inherent in the experiment. These are firstly the stratification of the experiment units, that is the blocks, whole-plots and sub-plots, and secondly, the treatment structure that is superimposed on the experimental material. The latter is of prime interest, in the presence of stratification. Thus the aim of the analysis is to examine the importance of the treatment effects while accounting for the stratification and restricted randomisation of the treatments to the experimental units. The ASReml input file is presented below.
```

split plot example
blocks 6 \# Coded 1...6 in first data field of oats.asd
nitrogen !A 4 \# Coded alphabetically
subplots * \# Coded 1...4
variety !A 3 \# Coded alphabetically
wplots * \# Coded 1...3
yield
oats.asd !SKIP 2
yield ~ mu variety nitrogen variety.nitrogen !r idv(blocks) idv(blocks.wplots)
residual idv(units)
predict nitrogen \# Print table of predicted nitrogen means
predict variety
predict variety nitrogen !SED

```

The data fields were blocks, wplots, subplots, variety, nitrogen and yield. The first five variables are factors that describe the stratification or experiment design and treatments. The standard split plot analysis is achieved by fitting the model terms blocks and blocks.wplots as random effects. The blocks.wplots.subplots term is not listed in the model because this interaction corresponds to the experimental units and is automatically included as the residual term. The fixed effects include the main effects of both variety and nitrogen and their interaction. The tables of predicted means and associated standard errors of differences (SEDs) have been requested. These are reported in the .pvs file. Abbreviated output is shown below.
```

    - - - Results from analysis of yield - - -
    Akaike Information Criterion 424.76 (assuming 3 parameters).
Bayesian Information Criterion 431.04

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Approximate stratum variance decomposition} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Stratum Degrees-Freedom}} & \multirow[t]{2}{*}{Variance} & \multicolumn{4}{|l|}{Component Coefficients} \\
\hline & & & 12.0 & 4.0 & 1.0 & \\
\hline idv(blocks.wplots & 10.00 & 601.331 & 0.0 & 4.0 & 1.0 & \\
\hline Residual Variance & 45.00 & 177.083 & 0.0 & 0.0 & 1.0 & \\
\hline Model_Term & & Gamma & & Sigma & Sigma/SE & \% C \\
\hline blocks & IDV_V & 61.21116 & & 214.477 & 1.27 & 0 P \\
\hline blocks.wplots & IDV_V & \(18 \quad 0.598937\) & & 106.062 & 1.56 & 0 P \\
\hline idv(units) & & 72 effects & & & & \\
\hline Residual & SCA_V & 721.000000 & & 177.083 & 4.74 & 0 P \\
\hline
\end{tabular}

\subsection*{16.2 Split plot design - Oats}
\begin{tabular}{lrrrr}
& Wald F statistics & & \\
Source of Variation & NumDF & DenDF & F-inc & P-inc \\
7 mu & 1 & 5.0 & 245.14 & \(<.001\) \\
4 variety & 2 & 10.0 & 1.49 & 0.272 \\
2 nitrogen & 3 & 45.0 & 37.69 & \(<.001\) \\
8 variety.nitrogen & 6 & 45.0 & 0.30 & 0.932
\end{tabular}

For simple variance component models such as the above, the default parameterisation for the variance component parameters is as the ratio to the residual variance. Thus ASReml prints the variance component ratio and variance compo for each term in the random model in the columns labelled Gamma and Component respectively.

A table of Wald F statistics is printed below this summary. The usual decomposition has three strata, with treatment effects separating into different strata as a consequence of the balanced design and the allocation of variety to whole-plots. In this balanced case, it is straightforward to derive the ANOVA estimates of the stratum variances from the REML estimates of the variance components. That is
\[
\begin{aligned}
\text { blocks } & =12 \tilde{\sigma}_{b}^{2}+4 \tilde{\sigma}_{w}^{2}+\tilde{\sigma}^{2}=3175.1 \\
\text { blocks.wplots } & =4 \tilde{\sigma}_{w}^{2}+\tilde{\sigma}^{2}=601.3 \\
\text { residual } & =\tilde{\sigma}^{2}=177.1
\end{aligned}
\]

The default output for testing fixed effects used by ASReml is a table of so-called incremental Wald F statistics. These Wald F statistics are described in Section 6.11. They are simply the Wald test statistics divided by the number of estimable effects for that term. In this example there are four terms included in the summary. The overall mean (denoted by mu) is of no interest for these data. The tests are sequential, that is the effect of each term is assessed by the change in sums of squares achieved by adding the term to the current model, defined by the model which includes those terms appearing above the current term given the variance parameters. For example, the test of nitrogen is calculated from the change in sums of squares for the two models mu variety nitrogen and mu variety. No refitting occurs, that is the variance parameters are held constant at the REML estimates obtained from the currently specified fixed model.

The incremental Wald statistics have an asymptotic \(\chi^{2}\) distribution, with degrees of freedom (df) given by the number of estimable effects (the number in the DF column). In this example, the incremental Wald F statistics are numerically the same as the ANOVA F statistics, and ASReml has calculated the appropriate denominator df for testing fixed effects. This is a simple problem for balanced designs, such as the split plot design, but it is not straightforward to determine the relevant denominator df in unbalanced designs, such as the rat data set described in the next section.

Tables of predicted means are presented for the nitrogen, variety, and variety by nitrogen tables in the .pvs file. The qualifier !SED has been used on the third predict statement and so the matrix of SEDs for the variety by nitrogen table is printed. For the first two predictions, the average SED is calculated from the average variance of differences. Note

\subsection*{16.2 Split plot design - Oats}
also that the order of the predictions (e.g. 0.6_cwt, 0.4_cwt 0.2_cwt 0_cwt for nitrogen) is simply the order those treatment labels were discovered in the data file.
\begin{tabular}{ll}
Split plot analysis - oat Variety.Nitrogen & 14 Apr 2008 16:15:49 \\
oats
\end{tabular}

Ecode is E for Estimable, * for Not Estimable

The predictions are obtained by averaging across the hypertable
calculated from model terms constructed solely from factors
in the averaging and classify sets.
Use !AVERAGE to move ignored factors into the averaging set.

Predicted values of yield
The SIMPLE averaging set: variety
The ignored set: blocks wplots
\begin{tabular}{lrr}
nitrogen & Predicted_Value Standard_Error Ecod \\
\(0.6 _\)Cwt & 123.3889 & 7.1747 E \\
\(0.4 _\)cwt & 114.2222 & 7.1747 E \\
0.2_cwt & 98.8889 & 7.1747 E \\
0_cwt & 79.3889 & 7.1747 E
\end{tabular}

SED: Overall Standard Error of Difference 4.436

\subsection*{16.2 Split plot design - Oats}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Predicted values with SED (PV)}} \\
\hline \multicolumn{4}{|l|}{\[
126.833
\]} & \\
\hline 118.500 & 9.71503 & & & \\
\hline 124.833 & 9.71503 & 9.71503 & & \\
\hline 117.167 & 7.68295 & 9.71503 & 9.71503 & \\
\hline 110.833 & 9.71503 & 7.68295 & 9.71503 & 9.71503 \\
\hline 114.667 & 9.71503 & 9.71503 & 7.68295 & 9.71503 \\
\hline \multicolumn{5}{|l|}{9.71503} \\
\hline 108.500 & 7.68295 & 9.71503 & 9.71503 & 7.68295 \\
\hline 9.71503 & 9.71503 & & & \\
\hline 89.6667 & 9.71503 & 7.68295 & 9.71503 & 9.71503 \\
\hline 7.68295 & 9.71503 & 9.71503 & & \\
\hline 98.5000 & 9.71503 & 9.71503 & 7.68295 & 9.71503 \\
\hline 9.71503 & 7.68295 & 9.71503 & 9.71503 & \\
\hline 86.6667 & 7.68295 & 9.71503 & 9.71503 & 7.68295 \\
\hline 9.71503 & 9.71503 & 7.68295 & 9.71503 & 9.71503 \\
\hline 71.5000 & 9.71503 & 7.68295 & 9.71503 & 9.71503 \\
\hline 7.68295 & 9.71503 & 9.71503 & 7.68295 & 9.71503 \\
\hline \multicolumn{5}{|l|}{9.71503} \\
\hline 80.0000 & 9.71503 & 9.71503 & 7.68295 & 9.71503 \\
\hline 9.71503 & 7.68295 & 9.71503 & 9.71503 & 7.68295 \\
\hline 9.71503 & 9.71503 & & & \\
\hline
\end{tabular}

SED: Standard Error of Difference: Min 7.6830 Mean 9.1608 Max 9.7150

\subsection*{16.3 Unbalanced nested design - Rats}

The second example we consider is a data set which illustrates some further aspects of testing fixed effects in linear mixed models. This example differs from the split plot example, as it is unbalanced and so more care is required in assessing the significance of fixed effects.

The experiment was reported by Dempster et al. (1984) and was designed to compare the effect of three doses of an experimental compound (control, low and high) on the maternal performance of rats. Thirty female rats (dams) were randomly split into three groups of 10 and each group randomly assigned to the three different doses. All pups in each litter were weighed. The litters differed in total size and in the numbers of males and females. Thus the additional covariate, littersize was included in the analysis. The differential effect of the compound on male and female pups was also of interest. Three litters had to be dropped from experiment, which meant that one dose had only 7 dams. The analysis must account for the presence of between dam variation, but must also recognise the stratification of the experimental units (pups within litters) and that doses and littersize belong to the dam stratum. Table 16.2 presents an indicative AOV decomposition for this experiment.

Table 16.2: Rat data: AOV decomposition
\begin{tabular}{lllr}
stratum & decomposition & type & df or ne \\
\hline \begin{tabular}{llll}
constant \\
dams
\end{tabular} & 1 & F & 1 \\
& dose & F & 2 \\
& littersize & F & 1 \\
& dam & R & 27 \\
dams.pups & sex & F & 1 \\
& dose.sex & F & 2 \\
error & & R & \\
\hline
\end{tabular}

The dose and littersize effects are tested against the residual dam variation, while the remaining effects are tested against the residual within litter variation. The ASReml input to achieve this analysis is presented below.
```

Rats example
dose 3 !A
sex 2 !A
littersize
dam 27
pup 18
weight
rats.asd !DOPATH 1 \# Change DOPATH argument to select each PATH
!PATH 1
weight ~ mu littersize dose sex dose.sex !r idv(dam)

```

\subsection*{16.3 Unbalanced nested design - Rats}
```

residual idv(units)
!PATH 2
weight ~ mu out(66) littersize dose sex dose.sex !r idv(dam)
residual idv(units)
!PATH 3
weight ~ mu littersize dose sex !r idv(dam)
residual idv(units)
!PATH 4
weight ~ mu littersize dose sex
residual idv(units)

```

The input file contains an example of the use of the !DOPATH qualifier. Its argument specifies which part to execute. We will discuss the models in the two parts. It also includes the \(!\) FCON qualifier to request conditional Wald F statistics. Abbreviated output from part 1 is presented below.

- - - Results from analysis of weight - - -
```

Akaike Information Criterion -170.48 (assuming 2 parameters).
Bayesian Information Criterion -162.97

```

\begin{tabular}{lrrrrr}
Source of Variation & NumDF & DenDF_con F_inc & F_con M & P_con \\
7 mu & 1 & 32.0 & 9049.48 & 1099.20 & b
\end{tabular}\(<.0019\).

Notice: The DenDF values are calculated ignoring fixed/boundary/singular variance parameters using algebraic derivatives.
4 dam
27 effects fitted
SLOPES FOR LOG (ABS (RES)) on LOG(PV) for Section 1
2.27
\[
3 \text { possible outliers: see .res file }
\]

\subsection*{16.3 Unbalanced nested design - Rats}

The iterative sequence has converged and the variance component parameter for dam hasn't changed for the last three iterations. The incremental Wald F statistics indicate that the interaction between dose and sex is not significant. The F_con column helps us to assess the significance of the other terms in the model. It confirms littersize is significant after the other terms, that dose is significant when adjusted for littersize and sex but ignoring dose.sex, and that sex is significant when adjusted for littersize and dose but ignoring dose.sex. These tests respect marginality to the dose. sex interaction.

We also note the comment 3 possible outliers: see .res file. Checking the .res file, we discover unit 66 has a standardised residual of -8.80 (see Figure 16.1). The weight of this female rat, within litter 9 is only 3.68 , compared to weights of 7.26 and 6.58 for two other female sibling pups. This weight appears erroneous, but without knowledge of the actual experiment we retain the observation in the following. However, part 2 shows one way of 'dropping' unit 66 by fitting an effect for it with out(66).

Figure 16.1: Residual plot for the rat data
We refit the model without the dose.sex term. Note that the variance parameters are re-estimated, though there is little change from the previous analysis.

\subsection*{16.4 Source of variability in unbalanced data - Volts}
\begin{tabular}{llrrrr}
7 mu & 1 & 32.0 & 8981.48 & 1093.05 &.\(<.001\) \\
3 & littersize & 1 & 31.4 & 27.85 & 46.43 A
\end{tabular}\(<.001\)

Part 4 shows what happens if we (wrongly) drop dam from this model. Even if a random term is not 'significant', it should not be dropped from the model when we are testing fixed effects, or desire standard errors of adjusted means, if it represents a strata of the design as in this case.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model_Term & \multicolumn{4}{|c|}{Gamma} & Sigma & Sigma/SE & \% C \\
\hline idv(units) & \multicolumn{4}{|c|}{322 effects} & & & \\
\hline Residual & SCA_V & 322 & 1.000000 & & 0.253182 & 12.59 & 0 P \\
\hline & & & Wald F sta & atist & & & \\
\hline Source of Variation & & & NumDF D & DenDF & on F_inc & F_con M & P_con \\
\hline 7 mu & & & 1 & 317.0 & 47077.31 & 3309.42 & \(<.001\) \\
\hline 3 littersize & & & 1 & 317.0 & 68.48 & 146.50 A & \(<.001\) \\
\hline 1 dose & & & 2 & 317.0 & 60.99 & 58.43 A & \(<.001\) \\
\hline 2 sex & & & 1 & 317.0 & 24.52 & 24.52 A & \(<.001\) \\
\hline
\end{tabular}

\subsection*{16.4 Source of variability in unbalanced data - Volts}

In this example we illustrate an analysis of unbalanced data in which the main aim is to determine the sources of variation rather than assess the significance of imposed treatments. The data are taken from Cox and Snell (1981) and involve an experiment to examine the variability in the production of car voltage regulators. Standard production of regulators involves two steps. Regulators are taken from the production line to a setting station and adjusted to operate within a specified voltage range. From the setting station the regulator is then passed to a testing station where it is tested and returned if outside the required range.

The voltage of 64 regulators was set at 10 setting stations (setstat); between 4 and 8 regulators were set at each station. The regulators were each tested at four testing stations (teststat). The ASReml input file is presented below.
```

Voltage data
teststat 4 \# 4 testing stations tested each regulator
setstat !A \# 10 setting stations each set 4-8 regulators
regulator 8 \# regulators numbered within setting stations
voltage
voltage.asd !skip 1
voltage ~ mu !r idv(setstat) idv(setstat.regulator) idv(teststat) idv(setstat.teststat)
residual idv(units)

```

The factor regulator numbers the regulators within each setting station. Thus the term setstat.regulator fits an effect for each regulator, while the other terms examine the effects of the setting and testing stations and possible interaction. The abbreviated output
is given below

The convergence criteria has been satisfied after six iterations. A warning message is printed below the summary of the variance components because the variance component for the setstat.teststat term has been fixed near the boundary. The default constraint for variance components (!GP) is to ensure that the REML estimate remains positive. Under this constraint, if an update for any variance component results in a negative value then ASReml sets that variance component to a small positive value. If this occurs in subsequent iterations the parameter is fixed to a small positive value and the code B replaces \(P\) in the \(C\) column of the summary table. The default constraint can be overridden using the ! GU qualifier, but it is not generally recommended for standard analyses.

Figure 16.2 presents the residual plot which indicates two unusual data values. These values are successive observations, namely observation 210 and 211, being testing stations 2 and 3 for setting station \(9(J)\), regulator 2 . These observations will not be dropped from the following analyses for consistency with other analyses conducted by Cox and Snell (1981) and in the GENSTAT manual.

The REML log-likelihood from the model without the setstat.teststat term was 203.242, the same as the REML log-likelihood for the previous model. Table 16.3 presents a summary of the REML log-likelihood ratio for the remaining terms in the model. The summary of the ASReml output for the current model is given below. The column labelled Sigma/SE is printed by ASReml to give a guide as to the significance of the variance component for each term in the model. The statistic is simply the REML estimate of the variance component divided by the square root of the diagonal element (for each component) of the inverse of the average information matrix. The diagonal elements of the expected (not the average) information matrix are the asymptotic variances of the REML estimates of the variance parameters. These Sigma/SE statistics cannot be used to test the null hypothesis that the variance component is zero. If we had used this crude measure then the conclusions would have been inconsistent with the conclusions obtained from the REML log-likelihood ratio test

\subsection*{16.4 Source of variability in unbalanced data - Volts}
```

Itage example 5-3-6 from the GENSTAT REML manual Residuals vs Fitted valu
Residuals (Y) -1.08: 1.45 Fitted values (X) 15.56: 16.81

```


Figure 16.2: Residual plot for the voltage data
(see Table 16.3).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model_Term & & & Gamma & Sigma & /SE & \% C \\
\hline idv(TestStat) & IDV_V & 4 & \(0.642752 \mathrm{E}-01\) & 0.328704E-02 & 0.98 & 0 P \\
\hline idv(Setstat) & IDV_V & 10 & 0.233416 & 0.119369E-01 & 1.35 & 0 P \\
\hline idv (Regulator.Set) & IDV_V & 80 & 0.601817 & \(0.307770 \mathrm{E}-01\) & 3.64 & 0 P \\
\hline idv(units) & & 256 & effects & & & \\
\hline Residual & SCA_V & 256 & 1.000000 & 0.511400E-01 & 9.72 & 0 P \\
\hline
\end{tabular}

Table 16.3: REML log-likelihood ratio for the variance components in the voltage data
\begin{tabular}{lrrr}
& \begin{tabular}{r}
REML \\
terms
\end{tabular} & \begin{tabular}{c}
\(-2 \times\) \\
log-likelihood
\end{tabular} & \\
difference & P-value \\
\hline - setstat & & & \\
- setstat.regulator & 200.31 & 5.864 & .0077 \\
- teststat & 184.15 & 38.19 & .0000 \\
\hline
\end{tabular}

\subsection*{16.5 Balanced repeated measures - Height}

The data for this example is taken from the GENSTAT manual. It consists of a total of 5 measurements of height (cm) taken on 14 plants. The 14 plants were either diseased or healthy and were arranged in a glasshouse in a completely random design. The heights were measured \(1,3,5,7\) and 10 weeks after the plants were placed in the glasshouse. There were 7 plants in each treatment. The data are depicted in Figure 16.3 obtained by qualifier line !Y y1 !G tmt !JOIN
in the following multivariate ASReml job.

Figure 16.3: Trellis plot of the height for each of 14 plants
In the following we illustrate how various repeated measures analyses can be conducted in ASReml. For these analyses it is convenient to arrange the data in a multivariate form, with 7 fields representing the plant number, treatment identification and the 5 heights. The ASReml input file for our first model is
```

This is plant data multivariate
tmt !A \# Diseased Healthy
plant 14
y1 y3 y5 y7 y10
grass.asd !skip 1 !ASUV
!Y y1 !G tmt !JOIN \# Plot the data
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt !r idv(units)
residual idv(units.Trait)

```

The focus is modelling of the error variance for the data. Specifically we fit the multivariate regression model given by
\[
\begin{equation*}
\boldsymbol{Y}=\boldsymbol{D} \boldsymbol{T}+\boldsymbol{E} \tag{16.1}
\end{equation*}
\]
where \(\boldsymbol{Y}^{14 \times 5}\) is the matrix of heights, \(\boldsymbol{D}^{14 \times 2}\) is the design matrix, \(\boldsymbol{T}^{2 \times 5}\) is the matrix of fixed effects and \(\boldsymbol{E}^{14 \times 5}\) is the matrix of errors. The heights taken on the same plants will be correlated and so we assume that
\[
\begin{equation*}
\operatorname{var}(\operatorname{vec}(\boldsymbol{E}))=\boldsymbol{I}_{14} \otimes \boldsymbol{\Sigma} \tag{16.2}
\end{equation*}
\]
where \(\boldsymbol{\Sigma}^{5 \times 5}\) is a symmetric positive definite matrix.
The variance models used for \(\boldsymbol{\Sigma}\) are given in Table 16.4. These represent some commonly used models for the analysis of repeated measures data (see Wolfinger, 1986). Note that we have specified the ! ASUV qualifier. This is required to allow the fitting of all these models. Without ! ASUV, ASReml woul only allow us to fit the final (UnStructured) variance model which is the default \(\boldsymbol{R}\) structure fo

Table 16.4: Summary of variance models fitted to the plant data
\begin{tabular}{lrrr}
& \begin{tabular}{r}
number of \\
parameters
\end{tabular} & \begin{tabular}{r}
REML \\
log-likelihood
\end{tabular} & BIC \\
\hline & & & \\
Uniform & 2 & -196.88 & 401.95 \\
Power & 2 & -182.98 & 374.15 \\
Heterogeneous Power & 6 & -171.50 & 367.57 \\
Antedependence (order 1) & 9 & -160.37 & 357.51 \\
Unstructured & 15 & -158.04 & 377.50 \\
\hline \hline
\end{tabular}

The split plot in time model can be fitted in two ways, either by fitting a units term plus an ind residual as above, or by specifying a CORU variance model for the \(R\)-structure as follows
```

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
residual id(units).coru(Trait)

```

The two forms for \(\Sigma\) are given by
\[
\begin{array}{lll}
\boldsymbol{\Sigma} & =\sigma_{1}^{2} \boldsymbol{J}+\sigma_{2}^{2} \boldsymbol{I}, & \tag{16.3}\\
\boldsymbol{\Sigma}=\sigma_{e}^{2} \boldsymbol{I}+\sigma_{e}^{2} \rho(\boldsymbol{J}-\boldsymbol{I}), & & \text { CORU }
\end{array}
\]

It follows that
\[
\begin{align*}
\sigma_{e}^{2} & =\sigma_{1}^{2}+\sigma_{2}^{2} \\
\rho & =\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{16.4}
\end{align*}
\]

Portions of the two outputs are given below. The REML log-likelihoods for the two models are the same and it is easy to verify that the REML estimates of the variance parameters satisfy (16.4), viz. \(\sigma_{e}^{2}=286.310 \approx 159.858+126.528=286.386 ; 159.858 / 286.386=0.558191\).
```


# 

# !r idv(units.Trait)

# 

LogL=-204.593 S2= 224.61 60 df 0.1000 1.000
LogL=-201.233 S2= 186.52 60 df 0.2339 1.000
LogL=-198.453 S2= 155.09 60 df 0.4870 1.000
LogL=-197.041 S2= 133.85 60 df 0.9339 1.000
LogL=-196.881 S2= 127.56 60 df 1.204 1.000
LogL=-196.877 S2= 126.53 60 df 1.261 1.000
Final parameter values 1.2634 1.0000

-     -         - Results from analysis of y1 y3 y5 y7 y10 - -
Akaike Information Criterion 397.75 (assuming 2 parameters)
Bayesian Information Criterion 401.9
Approximate stratum variance decomposition
Stratum Degrees-Freedom Variance Component Coefficients
idv(units) 12.00 925.584 5.0
Residual Variance 48.00 126.494 0.0

Model_Term			Gamma	Sigma	Sigma/SE	$\%$
idv (units)	IDV_V	14	1.26342	159.816	2.11	0 P
idv(units.Trait)		70	effects			
Residual	SCA_V	70	1.000000	126.494	4.90	0

# 

# id(units).coru(Trait)

# 

LogL=-196.975 S2= 264.10 60 df 1.000 0.5000
LogL=-196.924 S2= 270.14 60 df 1.000 0.5178
LogL=-196.886 S2= 278.58 60 df 1.000 0.5400
LogL=-196.877 S2= 286.23 60 df 1.000 0.5580
S_S2= 286.31 60 df rerm=-196.877 1.000 rer 0.5582
Final parameter values
- - - Results from analysis of y1 y3 y5 y7 y10 - -
Akaike Information Criterion 397.75 (assuming 2 parameters)
Bayesian Information Criterion 401.9

Model_Term		Gamma	Sigma	Sigma/SE	$\%$	C	
id(units).coru(Trait)		70	effects				
Residual	SCA_V	70	1.000000	286.310	3.65	0	P
Trait	COR_R	1	0.558191	0.558191	4.28	0	P

```

A more realistic model for repeated measures data would allow the correlations to decrease as the lag increases such as occurs with the first order autoregressive model. However, since the heights are not measured at equally spaced time points we use the EXP model. The correlation function is given by
\[
\rho(u)=\phi^{u}
\]
where \(u\) is the time lag is weeks. The coding for this is
```

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
residual id(units).exp(Trait !INIT 0.5 !COORD 1 3 5 7 10)

```

A portion of the output is

When fitting power models be careful to ensure the scale of the defining variate, here time, does not result in an estimate of \(\phi\) too close to 1 . For example, use of days in this example would result in an estimate for \(\phi\) of about .993.
\[
\begin{array}{ccc}
\text { Residuals plotted against Row and Column position: } & 1 \\
\text { Range: } & -45.11 & 34.86
\end{array}
\]

Figure 16.4: Residual plots for the EXP variance model for the plant data
The residual plot from this analysis is presented in Figure 16.4. This suggests increasing variance over time. This can be modelled by using the EXPH model, which models \(\Sigma\) by
\[
\Sigma=D^{0.5} C D^{0.5}
\]
where \(\boldsymbol{D}\) is a diagonal matrix of variances and \(\boldsymbol{C}\) is a correlation matrix with elements given by \(c_{i j}=\phi^{\left|t_{i}-t_{j}\right|}\). The coding for this is
```

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
residual id(units).exph(Trait !INIT 0.5 100 200 300 300 300 !COORD 1 3 5 7 10)

```

Abbreviated output from this analysis is
\begin{tabular}{|c|c|c|}
\hline \(9 \mathrm{LogL=-171.512}\) & \(S 2=1.00000\) & 60 df \\
\hline 10 LogL=-171.500 & S2 \(=1.00000\) & 60 df \\
\hline 11 LogL=-171.497 & \(\mathrm{S} 2=1.00000\) & 60 df \\
\hline \(12 \mathrm{LogL=}=171.496\) & \(\mathrm{S} 2=1.00000\) & 60 df \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{- - - Results from analysis of y1 y3 y5 y7 y10 - - \(\begin{array}{ll}\text { Akaike Information Criterion } & 354.99 \text { (assuming } 6 \text { parameters). } \\ \text { Bayesian Information Criterion } & 367.56\end{array}\)}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
Model_Term & & \multicolumn{1}{c}{\begin{tabular}{c}
Sigma
\end{tabular}} & Sigma & Sigma/SE & \(\%\) C \\
id(units).exph(Trait) & & 70 effects
\end{tabular}
Covariance/Variance/Correlation Matrix Residual
\begin{tabular}{|c|c|c|c|c|c|}
\hline 61.05 & 0.8227 & 0.6768 & 0.5568 & 0.4155 & \\
\hline 54.90 & 72.95 & 0.8227 & 0.6768 & 0.5050 & \\
\hline 93.05 & 123.6 & 309.6 & 0.8227 & 0.6139 & \\
\hline 90.95 & 120.8 & 302.6 & 437.0 & 0.7462 & \\
\hline 63.49 & 84.36 & 211.2 & 305.1 & 382.5 & \\
\hline & & Wald F & atistic & & \\
\hline Source of & Variation & NumDF & DenDF & F-inc & P-in \\
\hline 8 Trait & & 5 & 18.7 & 108.25 & <. 00 \\
\hline 1 tmt & & 1 & 13.1 & 0.00 & 0.96 \\
\hline \(9 \mathrm{Tr} . \mathrm{tmt}\) & & 4 & 21.0 & 4.37 & 0.01 \\
\hline
\end{tabular}

The last two models we fit are the antedependence model of order 1 and the unstructured model. Starting values need not actually be supplie in this example (the defaults are adequate) but are suppled \(t\) demonstrate the syntax. We use the REML estimate of \(\boldsymbol{\Sigma}\) from the heterogeneous power model shown in the previous output. The antedependence model models \(\boldsymbol{\Sigma}\) by the inverse cholesky decomposition
\[
\boldsymbol{\Sigma}^{-1}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\prime}
\]
where \(\boldsymbol{D}\) is a diagonal matrix and \(\boldsymbol{U}\) is a unit upper triangular matrix. For an antedependence model of order \(q\), then \(u_{i j}=0\) for \(j>i+q-1\). The antedependence model of order 1 has 9 parameters for these data, 5 in \(\boldsymbol{D}\) and 4 in \(\boldsymbol{U}\). The input is given by
```

!ASSIGN ANTEI !< !INIT
60.1
54.6573.65

```
```

91.50 123.3 306.4
89.17 120.2 298.6 431.8
62.21 83.85 208.3 301.2 379.8
!>
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
redidual units.ante(Trait \$ANTEI)

```

The abbreviated output file is

Covariance/Variance/Correlation Matrix ANTE Residual
\begin{tabular}{rrrrr}
37.20 & 0.5946 & 0.3550 & 0.3115 & 0.3041 \\
23.38 & 41.55 & 0.5970 & 0.5239 & 0.5114 \\
34.84 & 61.93 & 258.9 & 0.8776 & 0.8566 \\
44.60 & 79.27 & 331.5 & 550.9 & 0.9761 \\
43.16 & 76.72 & 320.8 & 533.2 & 541.6
\end{tabular}

Source of Variation
8 Trait
NumDF
F-inc
188.83

1 tmt 1104
9 Trait.tmt 4

The iterative sequence converged and the antedependence parameter estimates are printed columnwise by time, the column of \(\boldsymbol{U}\) and the element of \(\boldsymbol{D}\). I.e.
\[
\boldsymbol{D}=\operatorname{diag}\left[\begin{array}{c}
0.0269 \\
0.0373 \\
0.0060 \\
0.0079 \\
0.0391
\end{array}\right], \boldsymbol{U}=\left[\begin{array}{ccccc}
1 & -0.6284 & 0 & 0 & 0 \\
0 & 1 & -1.4911 & 0 & 0 \\
0 & 0 & 1 & -1.2804 & 0 \\
0 & 0 & 0 & 1 & -0.9678 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\]

Finally the input and output files for the unstructured model are presented below. The REML estimate of \(\boldsymbol{\Sigma}\) from the ANTE model is used to provide starting values.
```

!ASSIGN USI !< !INIT
37.20
23.38 41.55
34.83 61.89 258.9
44.58 79.22 331.4 550.8
43.14 1.76.67 320.7 533.0 541.4
!>
y1 y3 y5 y7 y10 ~ Trait tmt Trait.tmt
residual id(units).us(Trait \$USI)

1 LogL=-160.368	$\mathrm{S} 2=$	1.0000	60 df
2 LogL=-159.027	$\mathrm{S} 2=$	1.0000	60 df
3 LogL=-158.247	$\mathrm{S} 2=$	1.0000	60 df
$4 \operatorname{LogL}=-158.040$	$\mathrm{~S} 2=$	1.0000	60 df
$5 \operatorname{LogL}=-158.036$	$\mathrm{~S} 2=$	1.0000	60 df

```
 - - - Results from analysis of y1 y3 y5 y7 y10 - -
Akaike Information Criterion 346.07 (assuming 15 parameters)
Bayesian Information Criterion 377.49
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Model_Term} & Sigma & Sigma & \multirow[t]{2}{*}{Sigma/SE} & \multirow[t]{2}{*}{\% C} \\
\hline id(units).us(Trait) & & & & fects & & & \\
\hline Trait & US_V & 1 & 1 & 37.2262 & 37.2262 & 2.45 & 0 P \\
\hline Trait & US_C & 2 & 1 & 23.3935 & 23.3935 & 1.77 & 0 P \\
\hline Trait & US_V & 2 & 2 & 41.5195 & 41.5195 & 2.45 & 0 P \\
\hline Trait & US_C & 3 & 1 & 51.6524 & 51.6524 & 1.61 & 0 P \\
\hline Trait & US_C & 3 & 2 & 61.9169 & 61.9169 & 1.78 & 0 P \\
\hline Trait & US_V & 3 & 3 & 259.121 & 259.121 & 2.45 & 0 P \\
\hline Trait & US_C & 4 & 1 & 70.8113 & 70.8113 & 1.54 & 0 P \\
\hline Trait & US_C & 4 & 2 & 57.6146 & 57.6146 & 1.23 & 0 P \\
\hline Trait & US_C & 4 & 3 & 331.807 & 331.807 & 2.29 & 0 P \\
\hline Trait & US_V & 4 & 4 & 551.507 & 551.507 & 2.45 & 0 P \\
\hline Trait & US_C & 5 & 1 & 73.7857 & 73.7857 & 1.60 & 0 P \\
\hline Trait & US_C & 5 & 2 & 62.5691 & 62.5691 & 1.33 & 0 P \\
\hline Trait & US_C & 5 & 3 & 330.851 & 330.851 & 2.29 & 0 P \\
\hline Trait & US_C & 5 & 4 & 533.756 & 533.756 & 2.42 & 0 P \\
\hline Trait & US_V & 5 & 5 & 542.175 & 542.175 & 2.45 & 0 P \\
\hline
\end{tabular}

However, the usual syntax for fitting an unstructured error model for multivariate data is to omit the ! ASUV qualifier and write
```

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt

```
residual id(units).us(Trait)

The antedependence model of order 1 is clearly more parsimonious than the unstructured model. Table 16.5 presents the incremental Wald \(F\) statistics for each of the variance models. There is a surprising level of discrepancy between models for the Wald F statistics. The main effect of treatment is significant for the uniform, power and antedependence models.

Table 16.5: Summary of Wald F statistics for fixed effects for variance models fitted to the plan
\begin{tabular}{lrr}
model & \begin{tabular}{r}
treatment \\
\((\mathrm{df}=1)\)
\end{tabular} & \begin{tabular}{c}
treatment.time \\
\((\mathrm{df}=4)\)
\end{tabular} \\
\hline & & \\
Uniform & 9.41 & 5.10 \\
Power & 6.86 & 6.13 \\
Heterogeneous power & 0.00 & 4.81 \\
Antedependence (order 1) & 4.14 & 3.91 \\
Unstructured & 1.71 & 4.46 \\
\hline
\end{tabular}

\subsection*{16.6 Spatial analysis of a field experiment - Barley}

In this section we illustrate the ASReml syntax for performing spatial and incomplete block analysis of a field experiment. There has been a large amount of interest in developing techniques for the analysis of spatial data both in the context of field experiments and geostatistical data (see for example, Cullis and Gleeson, 1991; Cressie, 1991; Gilmour et al., 1997). This example illustrates the analysis of 'so-called' regular spatial data, in which the data is observed on a lattice or regular grid. This is typical of most small plot designed field experiments. Spatial data is often irregularly spaced, either by design or because of the observational nature of the study. The techniques we present in the following can be extended for the analysis of irregularly spaced spatial data, though, larger spatial data sets may be computationally challenging, depending on the degree of irregularity or models fitted.

The data we consider is taken from Gilmour et al. (1995) and involves a field experiment designed to compare the performance of 25 varieties of barley. The experiment was conducted at Slate Hall Farm, UK in 1976, and was designed as a balanced lattice square with replicates laid out as shown in Table 16.6. The data fields were Rep, RowBlk, ColBlk, row, column and yield. Lattice row and column numbering is typically within replicates and so the terms specified in the linear model to account for the lattice row and lattice column effects would be Rep.latticerow Rep.latticecolumn. However, in this example lattice rows and columns are both numbered from 1 to 30 across replicates (see Table 16.6). The terms in the linear model are therefore simply RowBlk ColBlk. Additional fields row and column indicate the spatial layout of the plots.

The ASReml input file is presented below. Three models have been fitted to these data. The lattice analysis is included for comparison in PATH 3. In PATH 1 we use the separable first
order autoregressive model to model the variance structure of the plot errors. Gilmour et al. (1997) suggest this is often a useful model to commence the spatial modelling process. The form of the variance matrix for the plot errors (R structure) is given by
\[
\begin{equation*}
\sigma^{2} \boldsymbol{\Sigma}=\sigma^{2}\left(\boldsymbol{\Sigma}_{c} \otimes \boldsymbol{\Sigma}_{r}\right) \tag{16.5}
\end{equation*}
\]
where \(\boldsymbol{\Sigma}_{c}\) and \(\boldsymbol{\Sigma}_{r}\) are \(15 \times 15\) and \(10 \times 10\) matrix functions of the column \(\left(\phi_{c}\right)\) and row \(\left(\phi_{r}\right)\) autoregressive parameters respectively. Gilmour et al. (1997) recommend revision of the current spatial model based on the use of diagnostics such as the sample variogram of the residuals (from the current model). This diagnostic and a summary of row and column residual trends are produced by default with graphical versions of ASReml when a spatial model has been fitted to the errors. It can be suppressed, by the use of the -n option on the command line. We have produced the following plots by use of the !EPS qualifier. The ! RENAME ! ARG 123 qualifiers in conjunctio with ! DOPART \(\$ 1\) cause ASReml to run all three parts, appending the part number to the output file names.

Table 16.6: Field layout of Slate Hall Farm experiment
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Row} & \multicolumn{15}{|c|}{Column - Replicate levels} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 \\
\hline 6 & 4 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 6 \\
\hline 7 & 4 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 6 \\
\hline 8 & 4 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 6 \\
\hline 9 & 4 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 6 \\
\hline 10 & 4 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 6 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrrrrl}
Row & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 11 & 11 & 11 & 11 & 11 & 21 & 21 & 21 & 21 & 21 \\
2 & 2 & 2 & 2 & 2 & 2 & 12 & 12 & 12 & 12 & 12 & 22 & 22 & 22 & 22 & 22 \\
3 & 3 & 3 & 3 & 3 & 3 & 13 & 13 & 13 & 13 & 13 & 23 & 23 & 23 & 23 & 23 \\
4 & 4 & 4 & 4 & 4 & 4 & 14 & 14 & 14 & 14 & 14 & 24 & 24 & 24 & 24 & 24 \\
5 & 5 & 5 & 5 & 5 & 5 & 15 & 15 & 15 & 15 & 15 & 25 & 25 & 25 & 25 & 25 \\
6 & 6 & 6 & 6 & 6 & 6 & 16 & 16 & 16 & 16 & 16 & 26 & 26 & 26 & 26 & 26 \\
7 & 7 & 7 & 7 & 7 & 7 & 17 & 17 & 17 & 17 & 17 & 27 & 27 & 27 & 27 & 27 \\
8 & 8 & 8 & 8 & 8 & 8 & 18 & 18 & 18 & 18 & 18 & 28 & 28 & 28 & 28 & 28 \\
9 & 9 & 9 & 9 & 9 & 9 & 19 & 19 & 19 & 19 & 19 & 29 & 29 & 29 & 29 & 29 \\
10 & 10 & 10 & 10 & 10 & 10 & 20 & 20 & 20 & 20 & 20 & 30 & 30 & 30 & 30 & 30 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrrrrr}
Row & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
6 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
7 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
8 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
9 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
10 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30
\end{tabular}
!EPS !RENAME ! ARG 12
Slate Hall example
\(\begin{array}{ll}\text { Rep } 6 & \text { \# Six replicates of } 5 x 5 \text { plots in } 2 x 3 \text { arrangement } \\ \text { RowBlk } 30 \text { \# Rows within replicates numbered across replicates }\end{array}\)
```

    ColBlk 30 # Columns within replicates numbered across replicates
    row 10 # Field row
    column 15 # Field column
    variety 25
    yield
    barley.asd !skip 1 !DOPATH \$1
!PATH 1 \# AR1 x AR1
y ~ mu var
residual ar1v(column).ar1(row)
!PATH 2 \# AR1 x AR1 + units
y ~ mu var !r idv(units)
residual ar1v(column).ar1(row)
!PATH 3 \# incomplete blocks
y ~ mu var !r idv(Rep) idv(Rowblk) idv(Colblk)
residual idv(units)
!PATH O
predict variety !TWOSTAGEWEIGHTS

```

Abbreviated ASReml output file is presented below. The iterative sequence has converged to column and row correlation parameters of (.68377,.45859) respectively. The plot size and orientation is not known and so it is not possible to ascertain whether these values are spatially sensible. It is generally found that the closer the plot centroids, the higher the spatial correlation. This is not always the case and if the highest between plot correlation relates to the larger spatial distance then this may suggest the presence of extraneous variation (see Gilmour et al., 1997), for example. Figure 16.5 presents a plot of the sample variogram of the residuals from this model. The plot appears in reasonable agreement with the model.

The next model includes a measurement error or nugget effect component. That is the variance model for the plot errors is now given by
\[
\begin{equation*}
\sigma^{2} \boldsymbol{\Sigma}=\sigma^{2}\left(\boldsymbol{\Sigma}_{c} \otimes \boldsymbol{\Sigma}_{r}\right)+\psi \boldsymbol{I}_{150} \tag{16.6}
\end{equation*}
\]
where \(\psi\) is the ratio of nugget variance to error variance \(\left(\sigma^{2}\right)\). The abbreviated output for this model is given below. There is a significant improvement in the REML log-likelihood with the inclusion of the nugget effect (see Table 16.7).
```


# AR1 x AR1

# 

    1 LogL=-739.681 S2= 36034. 125 df 1.000 0.1000 0.1000
    2 LogL=-714.340 S2= 28109. 125 df 1.000 0.4049 0.1870
    3 LogL=-703.338 S2= 29914. 125 df 1.000 0.5737 0.3122
    4 LogL=-700.371 S2= 37464. 125 df 1.000 0.6789 0.4320
    5 LogL=-700.324 S2= 38602. 
    6 LogL=-700.322 S2= 38735. 125 df 1.000 0.6838
    7 LogL=-700.322 S2= 38754. 125 df 1.000 0.6838
    8 LogL=-700.322 S2= 38757. 
                - - - Results from analysis of yield - - -
    Akaike Information Criterion 1406.64 (assuming 3 parameters).
Bayesian Information Criterion 1415.13

```


Figure 16.5: Sample variogram of the residuals from the AR1 \(\times\) AR1 model

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ar1 (column).ar1 (row) & \multicolumn{4}{|c|}{150 effects} & & & \\
\hline Residual & SCA_V & 150 & 1.000000 & & 45793.4 & 2.74 & 0 P \\
\hline column & AR_R & 1 & 0.843791 & & 0.843791 & 12.33 & 0 P \\
\hline row & AR_R & 1 & 0.682682 & & 0.682682 & 6.68 & 0 P \\
\hline & & & Wald F sta & atistic & & & \\
\hline Source of Variation & & & NumDF & DenDF & F-inc & & P-inc \\
\hline 8 mu & & & 1 & 3.5 & 259.83 & & <. 001 \\
\hline 6 variety & & & 24 & 75.7 & 10.21 & & <. 001 \\
\hline
\end{tabular}

The lattice analysis (with recovery of between block information) is presented below. This variance model is not competitive with the preceding spatial models. The models can be formally compared using the BIC values for example.
\begin{tabular}{rlrl}
\# IB analysis & & \\
1 LogL=-734.184 & \(\mathrm{S} 2=\) & 26778. & 125 df \\
2 LogL=-720.060 & \(\mathrm{S} 2=\) & 16591. & 125 df \\
3 LogL=-711.119 & \(\mathrm{S} 2=\) & 11173. & 125 df \\
4 LogL=-707.937 & \(\mathrm{S} 2=8562.4\) & 125 df \\
5 LogL=-707.786 & \(\mathrm{S} 2=8091.2\) & 125 df \\
6 LogL=-707.786 & \(\mathrm{S} 2=8061.8\) & 125 df \\
7 LogL=-707.786 & \(\mathrm{S} 2=8061.8\) & 125 df
\end{tabular}
```

            - - - Results from analysis of yield - - -
    Akaike Information Criterion 1423.57 (assuming 4 parameters).
Bayesian Information Criterion 1434.88

```
 Approximate statum variance decomposition
\begin{tabular}{lrccccc}
Stratum & Degrees-Freedom & Variance & \multicolumn{2}{c}{ Component } & Coefficients & \\
idv (Rep) & 5.00 & 266657. & 25.0 & 5.0 & 5.0 & 1.0 \\
idv (RowBlk) & 24.00 & 74887.8 & 0.0 & 4.3 & 0.0 & 1.0 \\
idv (ColBlk) & 23.66 & 71353.5 & 0.0 & 0.0 & 4.3 & 1.0
\end{tabular}
\begin{tabular}{lllllll}
Residual Variance & 72.34 & 8061.81 & 0.0 & 0.0 & 0.0 & 1.0
\end{tabular}
\begin{tabular}{lrrrrrr}
Model_Term & & & Gamma & Sigma & Sigma/SE & \(\%\) C \\
idv(Rep) & IDV_V & 6 & 0.528714 & 4262.39 & 0.62 & 0 \\
idv (RowBlk) & IDV_V & 30 & 1.93444 & 15595.1 & 3.06 & 0 \\
P \\
idv(ColBlk) & IDV_V & 30 & 1.83725 & 14811.6 & 3.04 & 0 P \\
idv(units) & & 150 & effects & & & \\
Residual & SCA_V & 150 & 1.000000 & 8061.81 & 6.01 & 0 P
\end{tabular}
\begin{tabular}{lrrrr}
& Wald F statistics & \\
Source of Variation & NumDF & DenDF & F_inc & Prob \\
8 mu & 1 & 5.0 & 1216.29 & \(<.001\) \\
6 variety & 24 & 79.3 & 8.84 & \(<.001\)
\end{tabular}

Finally, we present portions of the .pvs files to illustrate the prediction facility of ASReml. The first five and last three variety means are presented for illustration. The overall SED printed is the square root of the average variance of difference between the variety means. The two spatial analyses have a range of SEDs which are available if the !SED qualifier is used. All variety comparisons have the same SED from the third analysis as the design is a balanced lattice square. The Wald F statistic statistics for the spatial models are greater
than for the lattice analysis. We note the Wald F statistic for the AR1×AR1 + units model is smaller than the Wald F statistic for the AR1 \(\times\) AR1.
```

Predicted values of yield
\#AR1 x AR1
variety Predicted_Value Standard_Error Ecode
1.0000 1257.9763 64.6146 E
2.0000 1501.4483 64.9783 E
3.0000 1404.9874 64.6260 E
4.0000 1412.5674 64.9027 E
5.0000 1514.4764 65.5889 E
23.0000 1311.4888 64.0767 E
24.0000 1586.7840 64.7043 E
25.0000 1592.0204 63.5939 E
SED: Overall Standard Error of Difference 59.05
\#AR1 x AR1 + units
variety Predicted_Value Standard_Error Ecode
1.0000 1245.5843 97.8591 E
2.0000 1516.2331 97.8473 E
3.0000 1403.9863 98.2398 E
4.0000 1404.9202 97.9875 E
5.0000 1471.6197 98.3607 E
23.0000 1316.8726 98.0402 E
24.0000 1557.5278 98.1272 E
25.0000 1573.8920 97.9803 E
SED: Overall Standard Error of Difference 60.51

# IB

    Rep is ignored in the prediction
    RowBlk is ignored in the prediction
ColBlk is ignored in the prediction
variety Predicted_Value Standard_Error Ecode
1.0000 1283.5870 60.1994 E
2.0000 1549.0133 60.1994 E
3.0000 1420.9307 60.1994 E
4.0000 1451.8554 60.1994 E
5.0000 1533.2749 60.1994 E
23.0000 1329.1088 60.1994 E
24.0000 1546.4699 60.1994 E
25.0000 1630.6285 60.1994 E
SED: Overall Standard Error of Difference 62.02

```

Notice the differences in SE and SED associated with the various models. Choosing a model on the basis of smallest SE or SED is not recommended because the model is not necessarily fitting the variability present in the data.

The predict statement included the qualifier !TWOSTAGEWEIGHTS. This generates an extra table in the .pvs file which we now display for each model.

Table 16.7: Summary of models for the Slate Hall data
\begin{tabular}{lrrrr}
& \begin{tabular}{r}
REML
\end{tabular} & \begin{tabular}{r}
number of \\
model
\end{tabular} & \begin{tabular}{rl}
Wald
\end{tabular} \\
\hline & log-likelihood & parameters & F statistic & SED \\
\hline AR1 \(\times\) AR1 & & & & \\
AR1 \(\times\) AR1 + units & -700.32 & 3 & 13.04 & 59.0 \\
IB & -696.82 & 4 & 10.22 & 60.5 \\
\hline \hline
\end{tabular}

The value of 4 for the IB analysis is clearly reasonable given there are 6 actual replicates but this analysis has used up 48 degrees of freedom for the rowblk and colblk effects. The precision from the spatial analyse (\(45796.58 / 23.8842=1917.442\) c.f. \(8061.808 / 4.03145=\) 1999.729) are similar but slightly lower reflecting the gain in accuracy from the spatial analysis. For further reading, see Smith et al. (2001, 2005).

\subsection*{16.7 Unreplicated early generation variety trial - Wheat}

To further illustrate the approaches presented in the previous section, we consider an unreplicated field experiment conducted at Tullibigeal situated in south-western NSW. The
trial was an S1 (early stage) wheat variety evaluation trial and consisted of 525 test lines which were randomly assigned to plots in a 67 by 10 array. There was a check plot variety every 6 plots within each column. That is the check variety was sown on rows \(1,7,13, \ldots, 67\) of each column. This variety was numbered 526. A further 6 replicated commercially available varieties (numbered 527 to 532) were also randomly assigned to plots with between 3 to 5 plots of each. The aim of these trials is to identify and retain the top, say \(20 \%\) of lines for further testing. Cullis et al. (1989) considered the analysis of early generation variety trials, and presented a one-dimensional spatial analysis which was an extension of the approach developed by Gleeson and Cullis (1987). The test line effects are assumed random, while the check variety effects are considered fixed. This may not be sensible or justifiable for most trials and can lead to inconsistent comparisons between check varieties and test lines. Given the large amount of replication afforded to check varieties there will be very little shrinkage irrespective of the realised heritability.

We consider an initial analysis with spatial correlation in one direction and fitting the variety effects (check, replicated and unreplicated lines) as random. We present three further spatial models for comparison. The ASReml input file is
```

!EPS !RENAME !ARG 1 2 3
Tullibigeal trial !DOPART \$1
linenum
yield
weed
column 10
row }6
variety 532 \# testlines 1:525, check lines 526:532
wheat.asd !SKIP 1
!PATH 1 \# AR1 x I
y ~ mu weed mv !r idv(variety)
residual ar1v(row).id(col)
!PATH 2 \# AR1 x AR1
y ~ mu weed mv !r variety
residual ar1v(row).ar1(col)
!PATH 3 \# AR1 x AR1 + column trend
y ~ mu weed pol(column,-1) mv !r idv(variety)
residual ar1v(row).ar1(col)
!PATH 4 \# AR1 x AR1 + Nugget + column trend
y ~ mu weed pol(column,-1) mv !r idv(variety) idv(units)
residual ar1(row).ar1(col)
predict var

```

The data fields represent the factors variety, row and column, a covariate weed and the plot yield (yield). There are four paths in the ASReml file. We begin with the one-dimensional spatial model, which assumes the variance model for the plot effects within columns is described by a first order autoregressive process. The abbreviated output file is
\begin{tabular}{llll}
1 & LogL \(=-4280.75\) & \(S 2=0.12850 E+06\) & 666 df \\
2 LogL=-4268.58 & S2 \(=0.12139 E+06\) & 666 df \\
3 LogL=-4255.89 & S2 \(=0.10969 \mathrm{E}+06\) & 666 df \\
4 LogL=-4243.76 & S2 \(=88040\). & 666 df \\
5 LogL=-4240.59 & S2 \(=84420\). & 666 df
\end{tabular}

\subsection*{16.7 Unreplicated early generation variety trial - Wheat}
\begin{tabular}{|c|c|c|c|}
\hline \(6 \mathrm{LogL=}=4240.01\) & S2= & 85617. & 666 df \\
\hline \(7 \mathrm{LogL=-4239.91}\) & S2= & 86032. & 666 df \\
\hline \(8 \mathrm{LogL=}=4239.88\) & S2= & 86189. & 666 df \\
\hline \(9 \mathrm{LogL=-4239.88}\) & S2= & 86253. & 666 df \\
\hline \(10 \mathrm{LogL=}=-4239.88\) & S2= & 86280. & 666 df \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{Akaike Information Criterion 8485.76 (assuming 3 parameters).}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Akaike Information Criterion Bayesian Information Criterion}} & \\
\hline & & & 8499.26 \\
\hline
\end{tabular}

The iterative sequence converged, the REML estimate of the autoregressive parameter indicating substantial within column heterogeneity.

The abbreviated output from the two-dimensional AR \(1 \times\) AR1 spatial model is

\begin{tabular}{lrrrrrr}
Model_Term & & & Gamma & Sigma & Sigma/SE & \(\%\) \\
C C \\
idv (variety) & IDV_V & 532 & 1.06038 & 88117.5 & 9.92 & 0 \\
ar1 (row).ar1 (column) & & 670 & effects & & & \\
Residual & SCA_V & 670 & 1.000000 & 83100.1 & 8.90 & 0 \\
row & AR_R & 1 & 0.685387 & 0.685387 & 16.65 & 0 \\
Polumn & AR_R & 1 & 0.285909 & 0.285909 & 3.87 & 0
\end{tabular}
\begin{tabular}{lrrrr}
Source of Variation & NumDF & DenDF & F-inc & P-inc \\
7 mu & 1 & 41.7 & 6248.66 & \(<.001\) \\
3 weed & 1 & 491.2 & 85.84 & \(<.001\)
\end{tabular}

The change in REML log-likelihood is significant (\(\chi_{1}^{2}=12.46, p<.001\)) with the inclusion of the autoregressive parameter for columns. Figure 16.6 presents the sample variogram of the residuals for the AR1 \(\times\) AR1 model. There is an indication that a linear drift from column 1 to column 10 is present. We include a linear regression coefficient pol (column, -1) in the model to account for this. Note we use the ' -1 ' option in the pol term to exclude the overall constant in the regression, as it is already fitted. The linear regression of column number on yield is significant \((t=-2.96)\). The sample variogram (Figure 16.7) is more satisfactory, though interpretation of variograms is often difficult, particularly for unreplicated trials. This is an issue for further research.

Figure 16.6: Sample variogram of the residuals from the AR1 \(\times\) AR1 model for the Tullibigeal data

The abbreviated output for this model and the final model in which a nugget effect has been included is
```

\#AR1xAR1 + pol(column,-1)
1 LogL=-4271.06 S2= 0.12731E+06 665 df
2 LogL=-4259.03 S2= 0.11963E+06 665 df
3 LogL=-4245.41 S2= 0.10556E+06 665 df
4 LogL=-4229.98 S2= 78754. 665 df
5 LogL=-4226.66 S2= 75970. 665 df
6 LogL=-4226.29 S2= 77975. 665 df
7 LogL=-4226.25 S2= 78313.
8 LogL=-4226.25 S2= 78396. 665 df
9 LogL=-4226.25 S2= 78419. 665 df

```


Figure 16.7: Sample variogram of the residuals from the AR1 \(\times\) AR1 + pol (column, -1) model for the Tullibigeal data
```

10 LogL=-4226.25 S2= 78425. 665 df
- - - Results from analysis of yield - - -
Akaike Information Criterion 8460.50 (assuming 4 parameters).
Bayesian Information Criterion 8478.50

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model_Term & \multirow{3}{*}{IDV_V} & \multicolumn{3}{|c|}{Gamma} & Sigma & Sigma/SE & \\
\hline idv(variety) & & 532 & 1.12313 & & 88081.9 & 9.81 & 0 P \\
\hline ar1 (row).ar1 (column) & & \multicolumn{4}{|l|}{670 effects} & & \\
\hline Residual & SCA_V & 670 & 1.000000 & & 78425.4 & 8.83 & 0 P \\
\hline row & AR_R & 1 & 0.665872 & & 0.665872 & 15.37 & 0 P \\
\hline \multirow[t]{2}{*}{column} & AR_R & 1 & 0.266047 & & 0.266047 & 3.53 & 0 P \\
\hline & & \multicolumn{4}{|c|}{Wald F statistics} & & \\
\hline Source of Variation & & & NumDF & DenDF & F-inc & & P-inc \\
\hline 7 mu & & & 1 & 42.5 & 7149.90 & & <. 001 \\
\hline 3 weed & & & 1 & 459.0 & 92.14 & & <. 001 \\
\hline 8 pol(column,-1) & & & 1 & 62.1 & 7.61 & & 0.008 \\
\hline
\end{tabular}
\#
\#AR1xAR1 + units + pol (column, -1)
\begin{tabular}{lll}
1 LogL=-4272.85 & \(\mathrm{S} 2=0.11684 \mathrm{E}+06\) & 665 df \\
2 LogL=-4265.70 & \(\mathrm{S} 2=83872\). & 665 df \\
3 LogL=-4240.99 & \(\mathrm{S} 2=80942\). & 665 df \\
\(4 \operatorname{LogL}=-4227.44\) & \(\mathrm{~S} 2=53712\). & 665 df \\
\(5 \operatorname{LogL}=-4221.09\) & \(\mathrm{~S} 2=52201\). & 665 df \\
\(6 \operatorname{LogL}=-4220.94\) & \(\mathrm{~S} 2=54803\). & 665 df
\end{tabular}

\subsection*{16.7 Unreplicated early generation variety trial - Wheat}
\begin{tabular}{lll}
7 LogL=-4220.94 & \(\mathrm{S} 2=\) & 54935.
\end{tabular}\(\quad 665 \mathrm{df}\)
- - - Results from analysis of yield - - -

Akaike Information Criterion 8451.88 (assuming 5 parameters).
Bayesian Information Criterion 8474.37
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model_Term & & & Gamma & Sigma & Sigma/SE & \% C \\
\hline idv(variety) & IDV_V & 532 & 1.32827 & 72967.0 & 6.99 & 0 P \\
\hline idv(units) & IDV_V & 670 & 0.562308 & 30889.9 & 3.78 & 0 P \\
\hline ar1 (row).ar1 (column) & & 670 & effects & & & \\
\hline Residual & SCA_V & 670 & 1.000000 & 54934.0 & 5.15 & 0 P \\
\hline row & AR_R & 1 & 0.835396 & 0.835396 & 18.38 & 0 P \\
\hline column & AR_R & 1 & 0.375499 & 0.375499 & 3.25 & 0 \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
& \multicolumn{2}{l}{ Wald F statistics } & \\
Source of Variation & NumDF & DenDF & F-inc & P-inc \\
7 mu & 1 & 13.6 & 4272.13 & \(<.001\) \\
3 weed & 1 & 470.3 & 86.31 & \(<.001\) \\
8 pol (column ,-1) & 1 & 27.4 & 3.69 & 0.065
\end{tabular}

The increase in REML log-likelihood is significant. The predicted means for the varieties can be produced and printed in the .pvs file as
```

Ecode is E for Estimable, * for Not Estimable
Warning: mv_estimates is ignored for prediction
Warning: units is ignored for prediction

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Predicted values of yield column is evaluated at
\[
5.5000
\]} \\
\hline \multicolumn{4}{|l|}{Model terms involving weed are predicted at the average:} & 0.4597 \\
\hline variety & Predicted_Value & Standard_Error E & Ecode & \\
\hline 1 & 2916.6768 & 179.5421 E & & \\
\hline 2 & 2955.1002 & 179.0278 E & & \\
\hline 3 & 2869.7482 & 177.2955 E & & \\
\hline 4 & 2982.5846 & 178.9939 E & & \\
\hline 522 & 2777.5127 & 179.3317 E & & \\
\hline 523 & 2907.1301 & 179.7729 E & & \\
\hline 524 & 2776.0280 & 180.3853 E & & \\
\hline 525 & 2716.1221 & 181.8923 E & & \\
\hline 526 & 2381.9697 & 44.1852 E & & \\
\hline 527 & 2696.4092 & 133.8687 E & & \\
\hline 528 & 2723.5890 & 112.6784 E & & \\
\hline 529 & 2701.6306 & 104.2832 E & & \\
\hline 530 & 3006.8237 & 112.7234 E & & \\
\hline 531 & 3019.5559 & 112.6742 E & & \\
\hline 532 & 3064.3052 & 113.0868 E & & \\
\hline \multicolumn{5}{|l|}{SED: Overall Standard Error of Difference 246.2} \\
\hline
\end{tabular}

Note that the (replicated) check lines have lower SE than the (unreplicated) test lines. There will also be large diffeneces in SEDs. Rather than obtaining the large table of all SEDs, you could do the prediction in parts
predict var 1:525 column 5.5
predict var 526:532 column 5.5 ! SED
to examine the matrix of pairwise prediction errors of variety differences.

\subsection*{16.8 Paired Case-Control study - Rice}

This data is concerned with an experiment conducted to investigate the tolerance of rice varieties to attack by the larvae of bloodworms. The data have been kindly provided by Dr. Mark Stevens, Yanco Agricultural Institute. A full description of the experiment is given by Stevens et al. (1999). Bloodworms are a significant pest of rice in the Murray and Murrumbidgee irrigation areas where they can cause poor establishment and substantial yield loss.

The experiment commenced with the transplanting of rice seedlings into trays. Each tray contained 32 seedlings and the trays were paired so that a control tray (no bloodworms) and a treated tray (bloodworms added) were grown in a controlled environment room for the duration of the experiment. At the end of this time rice plants were carefully extracted, the root system washed and root area determined for the tray using an image analysis system described by Stevens et al. (1999). Two pairs of trays, each pair corresponding to a different variety, were included in each run. A new batch of bloodworm larvae was used for each run. A total of 44 varieties was investigated with three replicates of each. Unfortunately the variety concurrence within runs was less than optimal. Eight varieties occurred with only one other variety, 22 with two other varieties and the remaining 14 with three different varieties.

In the next three sections we present an exhaustive analysis of these data using equivalent univariate and multivariate techniques. It is convenient to use two data files one for each approach. The univariate data file consists of factors pair, run, variety, tmt, unit and variate rootwt. The factor unit labels the individual trays, pair labels pairs of trays (to which varieties are allocated) and tmt is the two level bloodworm treatment factor (control/treated). The multivariate data file consists of factors variety and run and variates for root weight of both the control and exposed treatments (labelled yc and ye respectively).

Preliminary analyses indicated variance heterogeneity so that subsequent analyses were conducted on the square root scale. Figure 16.8 presents a plot of the treated and the control root area (on the square root scale) for each variety. There is a strong dependence between the treated and control root area, which is not surprising. The aim of the experiment was to determine the tolerance of varieties to bloodworms and thence identify the most tolerant varieties. The definition of tolerance should allow for the fact that varieties differ in their inherent seedling vigour (Figure 16.8). The original approach of the scientist was to regress the treated root area against the control root area and define the index of vigour as the residual from this regression. This approach is clearly inefficient since there is error in both variables. We seek to determine an index of tolerance from the joint analysis of treated and

\subsection*{16.8 Paired Case-Control study - Rice}
control root area.

Figure 16.8: Rice bloodworm data: Plot of square root of root weight for treated versus control

\subsection*{16.8.1 Standard analysis}

The allocation of bloodworm treatments within varieties and varieties within runs defines a nested block structure of the form
```

run/variety/tmt = run + run.variety + run.variety.tmt
( = run + pair + pair.tmt )
( = run + run.variety + units )

```

There is an additional blocking term, however, due to the fact that the bloodworms within a run are derived from the same batch of larvae whereas between runs the bloodworms come from different sources. This defines a block structure of the form
```

run/tmt/variety = run + run.tmt + run.tmt.variety
( = run + run.tmt + pair.tmt )

```

Combining the two provides the full block structure for the design, namely
```

run + run.variety + run.tmt + run.tmt.variety
= run + run.variety + run.tmt + units
= run + pair + run.tmt + pair.tmt

```

In line with the aims of the experiment the treatment structure comprises variety and treatment main effects and treatment by variety interactions. In the traditional approach the terms in the block structure are regarded as random and the treatment terms as fixed. The choice of treatment terms as fixed or random depends largely on the aims of the experiment. The aim of this example is to select the "best" varieties. The definition of best is somewhat more complex since it does not involve the single trait sqrt(rootwt) but rather two traits, namely sqrt(rootwt) in the presence/absence of bloodworms. Thus to minimise selection bias the variety main effects and thence the tmt.variety interactions are taken as random. The main effect of treatment is fitted as fixed to allow for the likely scenario that rather than a single population of treatment by variety effects there are in fact two populations (control and treated) with a different mean for each. There is evidence of this prior to analysis with the large difference in mean sqrt(rootwt) for the two groups (14.93 and 8.23 for control and treated respectively). The inclusion of tmt as a fixed effect ensures that BLUPs of tmt.variety effects are shrunk to the correct mean (treatment means rather than an overall mean).

The model for the data is given by
\[
\begin{equation*}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\tau}+\boldsymbol{Z}_{1} \boldsymbol{u}_{1}+\boldsymbol{Z}_{2} \boldsymbol{u}_{2}+\boldsymbol{Z}_{3} \boldsymbol{u}_{3}+\boldsymbol{Z}_{4} \boldsymbol{u}_{4}+\boldsymbol{Z}_{5} \boldsymbol{u}_{5}+\boldsymbol{e} \tag{16.7}
\end{equation*}
\]
where \(\boldsymbol{y}\) is a vector of length \(n=264\) containing the sqrt(rootwt) values, \(\boldsymbol{\tau}\) corresponds to a constant term and the fixed treatment contrast and \(\boldsymbol{u}_{1} \ldots \boldsymbol{u}_{5}\) correspond to random variety, treatment by variety, run, treatment by run and variety by run effects. The random effects and error are assumed to be independent Gaussian variables with zero means and variance structures \(\operatorname{var}\left(\boldsymbol{u}_{i}\right)=\sigma_{i}^{2} \boldsymbol{I}_{b_{i}}\) (where \(b_{i}\) is the length of \(\boldsymbol{u}_{i}, i=1 \ldots 5\)) and \(\operatorname{var}(\boldsymbol{e})=\sigma^{2} \boldsymbol{I}_{n}\).

The ASReml code for this analysis is

\subsection*{16.8 Paired Case-Control study - Rice}
```

Bloodworm data Dr M Stevens
pair 132
rootwt
run 66
tmt 2 !A
id
variety 44 !A
rice.asd !skip 1 !DOPATH 1
!PATH 1
sqrt(rootwt) ~ mu tmt !r idv(variety) idv(variety.tmt) idv(run) ,
idv(pair) idv(run.tmt)
residual idv(units)
!PATH 2
sqrt(rootwt) ~ mu tmt !r idv(variety) diag(tmt).id(variety) idv(run),
idv(pair) diag(tmt).id(run) idv(uni(tmt,2))
residual idv(units)

```

The two paths in the input file define the two univariate analyses we will conduct. We consider the results from the analysis defined in PATH 1 first. A portion of the output file is
\begin{tabular}{|c|c|c|c|}
\hline \(5 \mathrm{LogL=}=345.306\) & S2= & 1.3216 & 262 df \\
\hline \(6 \mathrm{LogL=}=345.267\) & S2= & 1.3155 & 262 df \\
\hline \(7 \mathrm{LogL=}=345.264\) & S2= & 1.3149 & 262 df \\
\hline \(8 \mathrm{LogL=}=345.263\) & S2= & 1.3149 & 262 df \\
\hline - - - Resul & fr & analy & qrt (ro \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Akaike Information Criterion 702.53 (assuming 6 parameters) Bayesian Information Criterion 723.94}} \\
\hline & & & \\
\hline
\end{tabular}

Approximate stratum variance decomposition
\begin{tabular}{lrrrrrrrr}
\\
Stratum & Degrees-Freedom & Variance & \multicolumn{9}{c}{ Component } & Coefficients & & \\
idv(variety) & 44.40 & 26.0156 & 7.3 & 3.0 & 3.6 & 2.0 & 1.5 & 1.0 \\
idv(run) & 45.17 & 7.41702 & 0.0 & 3.5 & -0.0 & 2.0 & 1.7 & 1.0 \\
idv(variety.tmt) & 39.53 & 2.99833 & 0.0 & 0.0 & 2.7 & -0.0 & 0.2 & 1.0 \\
idv(pair) & 41.43 & 3.26838 & 0.0 & 0.0 & 0.0 & 2.0 & -0.0 & 1.0 \\
idv(run.tmt) & 52.38 & 5.12369 & 0.0 & 0.0 & 0.0 & 0.0 & 2.2 & 1.0 \\
Residual Variance & 39.09 & 1.31486 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model_Term & & & Gamma & Sigma & Sigma/SE & \% C \\
\hline idv(variety) & IDV_V & 44 & 1.80947 & 2.37920 & 3.01 & 0 P \\
\hline idv(run) & IDV_V & 66 & 0.244243 & 0.321145 & 0.59 & 0 \\
\hline idv(variety.tmt) & IDV_V & 88 & 0.374220 & 0.492047 & 1.78 & 0 \\
\hline idv(pair) & IDV_V & 132 & 0.742328 & 0.976056 & 2.51 & 0 \\
\hline idv(run.tmt) & IDV_V & 132 & 1.32973 & 1.74841 & 3.65 & 0 P \\
\hline idv(units) & & 264 & effects & & & \\
\hline Residual & SCA_V & 264 & 1.000000 & 1.31486 & 4.42 & 0 P \\
\hline
\end{tabular}
\begin{tabular}{rcrr}
Wald F & statistics & & \\
NumDF & DenDF & F-inc & P-inc \\
1 & 53.6 & 1484.96 & \(<.001\) \\
1 & 60.4 & 469.35 & \(<.001\)
\end{tabular}

Table 16.8: Estimated variance components from univariate analyses of bloodworm data. (a) Model with homogeneous variance for all terms and (b) Model with heterogeneous variance for interactions involving tmt
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{source} & (a) & (b) \\
\hline & & control treated \\
\hline variety & 2.378 & 2.334 \\
\hline tmt.variety & 0.492 & \(1.505-0.372\) \\
\hline run & 0.321 & 0.319 \\
\hline tmt.run & 1.748 & \(1.388 \quad 2.223\) \\
\hline variety.run (pair) & 0.976 & 0.987 \\
\hline tmt.pair & 1.315 & 1.1561 .359 \\
\hline REML log-likelihood & -345.256 & -343.22 \\
\hline
\end{tabular}

The estimated variance components from this analysis are given in column (a) of table 16.8. The variance component for the variety main effects is large. There is evidence of tmt.variety interactions so we may expect some discrimination between varieties in terms of tolerance to bloodworms.

Given the large difference (\(p<0.001\)) between tmt means we may wish to allow for heterogeneity of variance associated with tmt. Thus we fit a separate variety variance for each level of tmt so that instead of assuming \(\operatorname{var}\left(\boldsymbol{u}_{2}\right)=\sigma_{2}^{2} \boldsymbol{I}_{88}\) we assume
\[
\operatorname{var}\left(\boldsymbol{u}_{2}\right)=\left[\begin{array}{cc}
\sigma_{2 c}^{2} & 0 \\
0 & \sigma_{2 t}^{2}
\end{array}\right] \otimes \boldsymbol{I}_{44}
\]
where \(\sigma_{2 c}^{2}\) and \(\sigma_{2 t}^{2}\) are the tmt. variety interaction variances for control and treated respectively. This model can be achieved using a diagonal variance structure for the treatment part of the interaction. We also fit a separate run variance for each level of tmt and heterogeneity at the residual level, by including the uni (tmt,2) term. We have chosen level 2 of tmt as we expect more variation for the exposed treatment and thus the extra variance component for this term should be positive. Had we mistakenly specified level 1 then ASReml would have estimated a negative component by setting the !GU option for this term. The portion of the ASReml output for this analysis is
```

    5 LogL=-343.759 S2= 1.2242 262 df : 1 components restrained
    6 LogL=-343.577 S2= 1.1738 262 df : 1 components restrained
    7 LogL=-343.543 S2= 1.1559 262 df
    8 LogL=-343.535 S2= 1.1469 262 df
    9 LogL=-343.535 S2= 1.1451 262 df
    - - - Results from analysis of sqrt(rootwt) - - -
    Akaike Information Criterion 705.07 (assuming 9 parameters).
Bayesian Information Criterion 737.18

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model_Term & & & Gamma & Sigma S & Sigma/SE & \% C \\
\hline idv(variety) & IDV_V & 44 & 1.89172 & 2.16613 & 2.99 & 0 P \\
\hline idv(run) & IDV_V & 66 & 0.296929 & 0.340000 & 0.62 & 0 P \\
\hline idv(pair) & IDV_V & 132 & 0.871770 & 0.998227 & 2.64 & 0 P \\
\hline \(i d v(u n i(t m t, 2))\) & IDV_V & 264 & 0.144454 & 0.165408 & 0.27 & 0 P \\
\hline idv(units) & & 264 & effects & & & \\
\hline Residual & SCA_V & 264 & 1.000000 & 1.14506 & 2.79 & P \\
\hline diag(tmt).id(variety) & & 88 & effects & & & \\
\hline tmt & DIAG_V & 1 & 1.09032 & 1.24848 & 2.21 & 0 P \\
\hline tmt & DIAG_V & 2 & \(0.148952 \mathrm{E}-05\) & \(0.170558 \mathrm{E}-05\) & \(5 \quad 2.79\) & 0 B \\
\hline diag(tmt).id(run) & & 132 & effects & & & \\
\hline tmt & DIAG_V & 1 & 1.25736 & 1.43975 & 2.25 & P \\
\hline tmt & DIAG_V & 2 & 1.86671 & 2.13750 & 2.97 & 0 P \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Warning: Code B - fixed at a boundary (!GP) F - fixed by user \\
? - liable to change from \(P\) to \(B \quad P\) - positive definite \\
C - Constrained by user (!VCC) U - unbounded \\
S - Singular Information matrix
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{\(S\) means there is no information in the data for this parameter.} \\
\hline \multicolumn{7}{|l|}{Very small components with Comp/SE ratios of zero sometimes indicate poor scaling. Consider rescaling the design matrix in such cases.} \\
\hline \multicolumn{7}{|c|}{Wald F statistics} \\
\hline Source of Variatio & & & umDF & F-inc & & \\
\hline 7 mu & & & 1 & 1405.14 & & \\
\hline 4 tmt & & & 1 & 441.72 & & \\
\hline
\end{tabular}

The estimated variance components from this analysis are given in column (b) of table 16.8. There is no significant variance heterogeneity at the residual or tmt.run level. This indicates that the square root transformation of the data has successfully stabilised the error variance. There is, however, significant variance heterogeneity for tmt.variety interactions with the variance being much greater for the control group. This reflects the fact that in the absence of bloodworms the potential maximum root area is greater. Note that the tmt.variety interaction variance for the treated group is negative. The negative component is meaningful (and in fact necessary and obtained by use of the ! GU option) in this context since it should be considered as part of the variance structure for the combined variety main effects and treatment by variety interactions. That is,
\[
\operatorname{var}\left(\mathbf{1}_{2} \otimes \boldsymbol{u}_{1}+\boldsymbol{u}_{2}\right)=\left[\begin{array}{cc}
\sigma_{1}^{2}+\sigma_{2 c}^{2} & \sigma_{1}^{2} \tag{16.8}\\
\sigma_{1}^{2} & \sigma_{1}^{2}+\sigma_{2 t}^{2}
\end{array}\right] \otimes \boldsymbol{I}_{44}
\]

Using the estimates from table 16.8 this structure is estimated as
\[
\left[\begin{array}{ll}
3.84 & 2.33 \\
2.33 & 1.96
\end{array}\right] \otimes \boldsymbol{I}_{44}
\]

Thus the variance of the variety effects in the control group (also known as the genetic variance for this group) is 3.84 . The genetic variance for the treated group is much lower (1.96). The genetic correlation is \(2.33 / \sqrt{3.84 * 1.96}=0.85\) which is strong, supporting earlier indications of the dependence between the treated and control root area (Figure 16.8).

Table 16.9: Equivalence of random effects in bivariate and univariate analyses
\begin{tabular}{lcc}
effects & \begin{tabular}{c}
bivariate \\
(model 16.10)
\end{tabular} & \begin{tabular}{c}
univariate \\
(model 16.7)
\end{tabular} \\
\hline trait.variety & \(\boldsymbol{u}_{v}\) & \(\mathbf{1}_{2} \otimes \boldsymbol{u}_{1}+\boldsymbol{u}_{2}\) \\
trait.run & \(\boldsymbol{u}_{r}\) & \(\mathbf{1}_{2} \otimes \boldsymbol{u}_{3}+\boldsymbol{u}_{4}\) \\
trait.pair & \(\boldsymbol{e}^{*}\) & \(\mathbf{1}_{2} \otimes \boldsymbol{u}_{5}+\boldsymbol{e}\) \\
\hline \hline
\end{tabular}

\subsection*{16.8.2 A multivariate approach}

In this simple case in which the variance heterogeneity is associated with the two level factor tmt, the analysis is equivalent to a bivariate analysis in which the two traits correspond to the two levels of tmt, namely sqrt(rootwt) for control and treated. The model for each trait is given by
\[
\begin{equation*}
\boldsymbol{y}_{j}=\boldsymbol{X} \boldsymbol{\tau}_{j}+\boldsymbol{Z}_{v} \boldsymbol{u}_{v_{j}}+\boldsymbol{Z}_{r} \boldsymbol{u}_{r_{j}}+\boldsymbol{e}_{j} \quad(j=c, t) \tag{16.9}
\end{equation*}
\]
where \(\boldsymbol{y}_{j}\) is a vector of length \(n=132\) containing the sqrtroot values for variate \(j(j=c\) for control and \(j=t\) for treated), \(\boldsymbol{\tau}_{j}\) corresponds to a constant term and \(\boldsymbol{u}_{v_{j}}\) and \(\boldsymbol{u}_{r_{j}}\) correspond to random variety and run effects. The design matrices are the same for both traits. The random effects and error are assumed to be independent Gaussian variables with zero means and variance structures var \(\left(\boldsymbol{u}_{v_{j}}\right)=\sigma_{v_{j}}^{2} \boldsymbol{I}_{44}\), var \(\left(\boldsymbol{u}_{r_{j}}\right)=\sigma_{r_{j}}^{2} \boldsymbol{I}_{66}\) and var \(\left(\boldsymbol{e}_{j}\right)=\sigma_{j}^{2} \boldsymbol{I}_{132}\). The bivariate model can be written as a direct extension of (16.9), namely
\[
\begin{equation*}
\boldsymbol{y}=\left(\boldsymbol{I}_{2} \otimes \boldsymbol{X}\right) \boldsymbol{\tau}+\left(\boldsymbol{I}_{2} \otimes \boldsymbol{Z}_{v}\right) \boldsymbol{u}_{v}+\left(\boldsymbol{I}_{2} \otimes \boldsymbol{Z}_{r}\right) \boldsymbol{u}_{r}+\boldsymbol{e}^{*} \tag{16.10}
\end{equation*}
\]
where \(\boldsymbol{y}=\left(\boldsymbol{y}_{c}^{\prime}, \boldsymbol{y}_{t}^{\prime}\right)^{\prime}, \boldsymbol{u}_{v}=\left(\boldsymbol{u}_{v_{c}}^{\prime}, \boldsymbol{u}_{v_{t}}^{\prime}\right)^{\prime}, \boldsymbol{u}_{r}=\left(\boldsymbol{u}_{r_{c}}^{\prime}, \boldsymbol{u}_{r_{t}}^{\prime}\right)^{\prime}\) and \(\boldsymbol{e}^{*}=\left(\boldsymbol{e}_{c}^{\prime}, \boldsymbol{e}_{t}^{\prime}\right)^{\prime}\).
There is an equivalence between the effects in this bivariate model and the univariate model of (16.7). The variety effects for each trait (\(\boldsymbol{u}_{v}\) in the bivariate model) are partitioned in (16.7) into variety main effects and tmt.variety interactions so that \(\boldsymbol{u}_{v}=\mathbf{1}_{2} \otimes \boldsymbol{u}_{1}+\boldsymbol{u}_{2}\). There is a similar partitioning for the run effects and the errors (see table 16.9).

In addition to the assumptions in the models for individual traits (16.9) the bivariate analysis involves the assumptions cov \(\left(\boldsymbol{u}_{v_{c}}\right) \boldsymbol{u}_{v_{t}}^{\prime}=\sigma_{v_{c t}} \boldsymbol{I}_{44}, \operatorname{cov}\left(\boldsymbol{u}_{r_{c}}\right) \boldsymbol{u}_{r_{t}}^{\prime}=\sigma_{r_{c t}} \boldsymbol{I}_{66}\) and \(\operatorname{cov}\left(\boldsymbol{e}_{c}\right) \boldsymbol{e}_{t}^{\prime}=\) \(\sigma_{c t} \boldsymbol{I}_{132}\). Thus random effects and errors are correlated between traits. So, for example, the variance matrix for the variety effects for each trait is given by
\[
\operatorname{var}\left(\boldsymbol{u}_{v}\right)=\left[\begin{array}{cc}
\sigma_{v_{c}}^{2} & \sigma_{v_{c t}} \\
\sigma_{v_{c t}} & \sigma_{v_{t}}^{2}
\end{array}\right] \otimes \boldsymbol{I}_{44}
\]

This unstructured form for trait.variety in the bivariate analysis is equivalent to the variety main effect plus heterogeneous tmt.variety interaction variance structure (16.8) in the univariate analysis. Similarly the unstructured form for trait.run is equivalent to the run main effect plus heterogeneous tmt.run interaction variance structure. The unstructured form for the errors (trait. pair) in the bivariate analysis is equivalent to the pair plus heterogeneous error (tmt.pair) variance in the univariate analysis. This bivariate
analysis is achieved in ASReml as follows, noting that the tmt factor here is equivalent to traits.
```

this is for the paired data
id
pair 132
run 66
variety 44 !A
yc ye
ricem.asd !skip 1 !X syc !Y sye
sqrt(yc) sqrt(ye) ~ Trait !r us(Trait).id(variety) us(Trait).id(run)
residual id(units).us(Trait)
predict variety

```

A portion of the output from this analysis is
```

8 LogL=-343.220 S2= 1.00000 262 df
9 LogL=-343.220 S2= 1.00000 262 df
- - - Results from analysis of sqrt(yc) sqrt(ye) - - -
Akaike Information Criterion 704.44 (assuming 9 parameters).
Bayesian Information Criterion 736.56

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Model_Term} & Sigma & Sigma & \multirow[t]{2}{*}{Sigma/SE} & \multirow[t]{2}{*}{\% C} \\
\hline id(units).us(Trait) & & & 64 & effects & & & \\
\hline Trait & US_V & 1 & 1 & 2.14370 & 2.14370 & 4.44 & 0 P \\
\hline Trait & US_C & 2 & 1 & 0.987342 & 0.987342 & 2.59 & 0 P \\
\hline Trait & US_V & 2 & 2 & 2.34744 & 2.34744 & 4.62 & 0 P \\
\hline us(Trait).id(variety) & & & 88 & effects & & & \\
\hline Trait & US_V & 1 & 1 & 3.83911 & 3.83911 & 3.47 & 0 P \\
\hline Trait & US_C & 2 & 1 & 2.33352 & 2.33352 & 3.01 & 0 P \\
\hline Trait & US_V & 2 & 2 & 1.96136 & 1.96136 & 2.69 & 0 P \\
\hline us(Trait).id(run) & & & 32 & effects & & & \\
\hline Trait & US_V & 1 & 1 & 1.70810 & 1.70810 & 2.61 & 0 P \\
\hline Trait & US_C & 2 & 1 & 0.319444 & 0.319444 & 0.59 & 0 P \\
\hline Trait & US_V & 2 & 2 & 2.54360 & 2.54360 & 3.20 & 0 P \\
\hline
\end{tabular}

Covariance/Variance/Correlation Matrix US Residual
\[
2.144 \quad 0.4401
\]
\[
0.9873 \quad 2.347
\]

Covariance/Variance/Correlation Matrix US us(Trait).id(variety
\(3.839 \quad 0.8504\)
\(2.334 \quad 1.961\)
Covariance/Variance/Correlation Matrix US us(Trait).id(run)
1.7080 .1533
\(0.3194 \quad 2.544\)

The resultant REML log-likelihood is identical to that of the heterogeneous univariate analysis (column (b) of table 16.8). The estimated variance parameters are given in Table 16.10.

The predicted variety means in the .pvs file are used in the following section on interpretation of results. A portion of the file is presented below. There is a wide range in SED reflecting the imbalance of the variety concurrence within runs.

Assuming Power transformation was (Y+0.000)~0.500
The ignored set: run
\begin{tabular}{|c|c|c|c|c|c|}
\hline variety & Trait & Power_value & Stand_Error Ecode & Retransformed_value & approx_SE \\
\hline AliCombo & sqrt (yc) & 14.9531 & 0.9181 E & 223.5962 & 27.4568 \\
\hline AliCombo & sqrt(ye) & 7.9941 & 0.7992 E & 63.9050 & 12.7784 \\
\hline Bluebelle & sqrt(yc) & 13.1036 & 0.9310 E & 171.7046 & 24.3987 \\
\hline Bluebelle & sqrt(ye) & 6.6302 & 0.8062 E & 43.9598 & 10.6903 \\
\hline C22 & sqrt(yc) & 16.6676 & 0.9181 E & 277.8096 & 30.6050 \\
\hline C22 & sqrt(ye) & 8.9541 & 0.7992 E & 80.1756 & 14.3130 \\
\hline YRK1 & sqrt (yc) & 15.1857 & 0.9549 E & 230.6068 & 29.0018 \\
\hline YRK1 & sqrt(ye) & 8.3355 & 0.8190 E & 69.4806 & 13.6531 \\
\hline YRK3 & sqrt(yc) & 13.3058 & 0.9549 E & 177.0431 & 25.4114 \\
\hline YRK3 & sqrt(ye) & 8.1134 & 0.8190 E & 65.8265 & 13.2892 \\
\hline
\end{tabular}

Figure 16.9: BLUPs for treated for each variety plotted against BLUPs for control

Table 16.10: Estimated variance parameters from bivariate analysis of bloodworm data
\begin{tabular}{lccc}
source & \begin{tabular}{c}
control \\
variance
\end{tabular} & \begin{tabular}{c}
treated \\
variance
\end{tabular} & covariance \\
\hline us (trait). variety & 3.84 & 1.96 & 2.33 \\
us (trait).run & 1.71 & 2.54 & 0.32 \\
us (trait).pair & 2.14 & 2.35 & 0.99 \\
\hline \hline
\end{tabular}

\subsection*{16.8.3 Interpretation of results}

Recall that the researcher is interested in varietal tolerance to bloodworms. This could be defined in various ways. One option is to consider the regression implicit in the variance structure for the trait by variety effects. The variance structure can arise from a regression of treated variety effects on control effects, namely
\[
\boldsymbol{u}_{v_{t}}=\beta \boldsymbol{u}_{v_{c}}+\boldsymbol{\epsilon}
\]
where the slope \(\beta=\sigma_{v_{c t}} / \sigma_{v_{c}}^{2}\). Tolerance can be defined in terms of the deviations from regression, \(\boldsymbol{\epsilon}\). Varieties with large positive deviations have greatest tolerance to bloodworms. Note that this is similar to the researcher's original intentions except that the regression has been conducted at the genotypic rather than the phenotypic level. In Figure 16.9 the BLUPs for treated have been plotted against the BLUPs for control for each variety and the fitted regression line (slope \(=0.61\)) has been drawn. Varieties with large positive deviations from the regression line include YRK3, Calrose, HR19 and WC1403.

Figure 16.10: Estimated deviations from regression of treated on control for each variety plotted against estimate for control

An alternative definition of tolerance is the simple difference between treated and control BLUPs for each variety, namely \(\boldsymbol{\delta}=\boldsymbol{u}_{v_{c}}-\boldsymbol{u}_{v_{t}}\). Unless \(\beta=1\) the two measures \(\boldsymbol{\epsilon}\) and \(\boldsymbol{\delta}\) have very different interpretations. The key difference is that \(\boldsymbol{\epsilon}\) is a measure which is independent of inherent vigour whereas \(\boldsymbol{\delta}\) is not. To see this consider
\[
\operatorname{cov}(\boldsymbol{\epsilon}) \boldsymbol{u}_{v_{c}}^{\prime}=\operatorname{cov}\left(\boldsymbol{u}_{v_{t}}-\beta \boldsymbol{u}_{v_{c}}\right) \boldsymbol{u}_{v_{c}}^{\prime}
\]

\subsection*{16.8 Paired Case-Control study - Rice}
\[
\begin{aligned}
& =\left(\sigma_{v_{c t}}-\frac{\sigma_{v_{c t}}}{\sigma_{v_{c}}^{2}} \sigma_{v_{c}}^{2}\right) \boldsymbol{I}_{44} \\
& =\mathbf{0}
\end{aligned}
\]
whereas
\[
\begin{aligned}
\operatorname{cov}(\boldsymbol{\delta}) \boldsymbol{u}_{v_{c}}^{\prime} & =\operatorname{cov}\left(\boldsymbol{u}_{v_{c}}-\boldsymbol{u}_{v_{t}}\right) \boldsymbol{u}_{v_{c}}^{\prime} \\
& =\left(\sigma_{v_{c}}^{2}-\sigma_{v_{c t}}\right) \boldsymbol{I}_{44}
\end{aligned}
\]

Figure 16.11: Estimated difference between control and treated for each variety plotted against estimate for control

The independence of \(\boldsymbol{\epsilon}\) and \(\boldsymbol{u}_{v_{c}}\) and dependence between \(\boldsymbol{\delta}\) and \(\boldsymbol{u}_{v_{c}}\) is clearly illustrated in Figures 16.10 and 16.11. In this example the two measures have provided very different rankings of the varieties. The choice of tolerance measure depends on the aim of the experiment. In this experiment the aim was to identify tolerance which is independent of inherent vigour so the deviations from regression measure is preferred.

\subsection*{16.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines - Oranges}

We now illustrate the use of random coefficients and cubic smoothing splines for the analysis of balanced longitudinal data. The implementation of cubic smoothing splines in ASReml was originally based on the mixed model formulation presented by Verbyla et al. (1999). More recently the technology has been enhanced so that the user can specify knot points; in the original approach the knot points were taken to be the ordered set of unique values of the explanatory variable. The specification of knot points is particularly useful if the number of unique values in the explanatory variable is large, or if units are measured at different times.

The data we use was originally reported by Draper and Smith (1998, ex24N, p559) and has recently been reanalysed by Pinheiro and Bates (2000, p338). The data are displayed in Figure 16.12 and are the trunk circumferences (in millimetres) of each of 5 trees taken at 7 times. All trees were measured at the same time so that the data are balanced. The aim of the study is unclear, though, both previous analyses involved modelling the overall 'growth' curve, accounting for the obvious variation in both level and shape between trees. Pinheiro and Bates (2000) used a nonlinear mixed effects modelling approach, in which they modelled the growth curves by a three parameter logistic function of age, given by
\[
\begin{equation*}
y=\frac{\phi_{1}}{1+\exp \left[-\left(x-\phi_{2}\right) / \phi_{3}\right]} \tag{16.11}
\end{equation*}
\]
where \(y\) is the trunk circumference, \(x\) is the tree age in days since December \(311968, \phi_{1}\) is the asymptotic height, \(\phi_{2}\) is the inflection point or the time at which the tree reaches \(0.5 \phi_{1}\), \(\phi_{3}\) is the time elapsed between trees reaching half and about \(3 / 4\) of \(\phi_{1}\).

Figure 16.12: Trellis plot of trunk circumference for each tree
The datafile consists of 5 columns viz, Tree, a factor with 5 levels, age, tree age in days since 31st December 1968, circ the trunk circumference and season. The last column season

\subsection*{16.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines Oranges}
was added after noting that tree age spans several years and if converted to day of year, measurements were taken in either Spring (April/May) or Autumn (September/October).

First we demonstrate the fitting of a cubic spline in ASReml by restricting the dataset to tree 1 only. The model includes the intercept and linear regression of trunk circumference on age and an additional random term \(\operatorname{spl}\) (age,7) which instructs ASReml to include a random term with a special design matrix with \(7-2=5\) columns which relate to the vector, \(\delta\) whose elements \(\delta_{i}, i=2, \ldots, 6\) are the second differentials of the cubic spline at the knot points. The second differentials of a natural cubic spline are zero at the first and last knot points (Green and Silverman, 1994). The ASReml job is
```

this is the orange data, for tree 1
seq \# record number is not used
Tree 5
age \# 118 484 664 1004 1231 1372 1582
circ
season !L Spring Autumn
orange.asd !skip 1 !filter 2 !select 1
!SPLINE spl(age,7) 118 484 664 1004 1231 1372 1582
!PVAL age 150 200:1500
circ ~ mu age !r idv(spl(age,7))
residual idv(units)
predict age

```

Note that the data for tree 1 has been selected by use of the !filter and !select qualifiers. Also note the use of !PVAL so that the spline curve is properly predicted at the additional nominated points. These additional data points are required for ASReml to form the design matrix to properly interpolate the cubic smoothing spline between knot points in the prediction process. Since the spline knot points are specifically nominated in the !SPLINE line, these extra points have no effect on the analysis run time. The !SPLINE line does not modify the analysis in this example since it simply nominates the 7 ages in the data file. The same analysis would result if the ! SPLINE line was omitted and spl (age,7) in the model was replaced with spl (age). An extract of the output file is

\subsection*{16.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines -} Oranges
```

Residual SCA_V 7 1.000000 50.2726 1.32 0 P
Notice: The DenDF values are calculated ignoring fixed/boundary/singular
variance parameters using algebraic derivatives.
Estimate Standard Error T-value T-prev
3 age
1 0.814772E-01
0.552336E-02
14.75
7 mu
124.4378
6 spl(age,7)
Finished: 19 Aug 2005 10:08:11.980 LogL Converged

```

The REML estimate of the smoothing constant indicates that there is some nonlinearity. The fitted cubic smoothing spline is presented in Figure 16.13. The fitted values were obtained from the .pvs file. The four points below the line were the spring measurements.

Figure 16.13: Fitted cubic smoothing spline for tree 1

We now consider the analysis of the full dataset. Following Verbyla et al. (1999) we consider the analysis of variance decomposition (see Table 16.11) which models the overall and individual curves.

An overall spline is fitted as well as tree deviation splines. We note however, that the intercept and slope for the tree deviation splines are assumed to be random effects. This is consistent with Verbyla et al. (1999). In this sense the tree deviation splines play a role in modelling the conditional curves for each tree and variance modelling. The intercept and

\subsection*{16.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines -} Oranges

Table 16.11: Orange data: AOV decomposition
\begin{tabular}{llrr}
\hline stratum & decomposition & type & df or ne \\
\hline constant & 1 & F & 1 \\
age & & & \\
& age & F & 1 \\
& spl(age,7) & R & 5 \\
& fac(age) & R & 7 \\
tree & & & \\
& tree & RC & 5 \\
age.tree & & & \\
& x.tree & RC & 5 \\
error & spl(age,7).tree & R & 25 \\
& & R & \\
\hline
\end{tabular}
slope for each tree are included as random coefficients (denoted by RC in Table 16.11). Thus, if \(\boldsymbol{U}^{5 \times 2}\) is the matrix of intercepts (column 1) and slopes (column 2) for each tree, then we assume that
\[
\operatorname{var}(\operatorname{vec}(\boldsymbol{U}))=\boldsymbol{\Sigma} \otimes \boldsymbol{I}_{5}
\]
where \(\boldsymbol{\Sigma}\) is a \(2 \times 2\) symmetric positive definite matrix. Non smooth variation can be modelled at the overall mean (across trees) level and this is achieved in ASReml by inclusion of fac (age) as a random term.

\subsection*{16.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines -} Oranges

Table 16.12: Sequence of models fitted to the Orange data
\begin{tabular}{lcccccc}
& \multicolumn{6}{c}{ model } \\
term & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline & & \(y\) & \(y\) & \(y\) & \(y\) & \(y\) \\
tree & y & y & y & y & y & y \\
age.tree & n & n & n & n & n & y \\
(covariance) & y & y & y & y & n & y \\
spl(age,7) & y & y & y & n & y & y \\
tree.spl(age, 7\()\) & n & y & y & n & n & n \\
fac(age) & n & n & y & y & y & y \\
season & & & & & & \\
& & & & & & \\
REML log-likelihood & -97.78 & -94.07 & -87.95 & -91.22 & -90.18 & -87.43 \\
\hline \hline
\end{tabular}

An extract of the ASReml input file is
```

circ ~ mu age !r str(Tree age.Tree us(2 !INIT 4.6 .00001 .000094).id(Tree)) idv(spl(age,7)),
idv(spl(age,7).Tree) idv(fac(age))
predict age Tree !IGNORE fac(age)

```

We stress the importance of model building in these settings, where we generally commence with relatively simple variance models and update to more complex variance models if appropriate. Table 16.12 presents the sequence of fitted models we have used. Note that the REML log-likelihoods for models 1 and 2 are comparable and likewise for models 3 to 6 . The REML log-likelihoods are not comparable between these groups due to the inclusion of the fixed season term in the second set of models.

We begin by modelling the variance matrix for the intercept and slope for each tree, \(\boldsymbol{\Sigma}\), as a diagonal matrix as there is no point including a covariance component between the intercept and slope if the variance component(s) for one (or both) is zero. Model 1 also does not include a non-smooth component at the overall level (that is, fac(age)). Abbreviated output is shown below.
```

6 LogL=-97.8517 S2= 7.2838 33 df
7 LogL=-97.7837 S2= 6.6673 33 df
8 LogL=-97.7792 S2= 6.4634 33 df
9 LogL=-97.7788 S2= 6.3911 33 df
10 LogL=-97.7788 S2= 6.3615 33 df
- - - Results from analysis of circ - - -
Akaike Information Criterion 205.56 (assuming 5 parameters).
Bayesian Information Criterion 213.04
Model_Term Gamma Sigma Sigma/SE \%C

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline idv(spl (age,7)) & IDV_V & 5 & 100.466 & 639.116 & 1.55 & 0 P \\
\hline Residual & SCA_V & 35 & 1.000000 & 6.36154 & 1.74 & 0 P \\
\hline idv(Tree) & ID_V & 1 & 4.78778 & 30.4577 & 1.24 & 0 P \\
\hline idv(Tree.age) & ID_V & 1 & 0.939009E-04 & \(0.597354 \mathrm{E}-03\) & 1.41 & 0 P \\
\hline idv(spl (age, 7).Tree) & ID_V & 1 & 1.11619 & 7.10070 & 1.44 & 0 P \\
\hline \multicolumn{7}{|c|}{Wald F statistics} \\
\hline Source of Variation & & & mDF DenDF & F-inc & & P-inc \\
\hline 9 mu & & & 14.0 & 47.05 & & 0.002 \\
\hline 3 age & & & 14.0 & 95.00 & & \(<.001\) \\
\hline
\end{tabular}

Figure 16.14: Plot of fitted cubic smoothing spline for model 1
A quick look suggests this is fine until we look at the predicted curves in Figure 16.14. The fit is unacceptable because the spline has picked up too much curvature, and suggests that there may be systematic non-smooth variation at the overall level. This can be formally examined by including the fac (age) term as a random effect. This increased the log-likelihood 3.71 (\(\mathrm{P}<0.05\)) with the \(\mathrm{spl}(\mathrm{age}, 7)\) smoothing constants heading to the boundary. There is a possible explanation in the season factor. When this is added (Model 3) it has an F ratio of \(107.5(\mathrm{P}<0.01)\) while the \(\mathrm{fac}(\) age \()\) term goes to the boundry. Notice that the inclusion of the fixed term season in models 3 to 6 means that comparisons with models 1 and 2 on the basis of the log-likelihood are not valid. The spring measurements are lower than the autumn measurements so growth is slower in winter. Models 4 and 5 successively examined each term, indicating that both smoothing constants are significant (\(\mathrm{P}<0.05\)). Lastly we add the covariance parameter between the intercept and slope for each tree in model 6 . This ensures that the covariance model will be translation invariant. A portion of the output file for model 6 is
\begin{tabular}{llll}
6 LogL=-87.5371 & \(\mathrm{S} 2=5.9488\) & 32 df \\
7 LogL=-87.4342 & \(\mathrm{S} 2=5.6885\) & 32 df \\
8 LogL=-87.4291 & \(\mathrm{S} 2=5.6434\) & 32 df \\
9 LogL=-87.4291 & \(\mathrm{S} 2=5.6412\) & 32 df
\end{tabular}
16.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines Oranges
```

    - - - Results from analysis of circ - - -
    Akaike Information Criterion 186.86 (assuming 6 parameters).
Bayesian Information Criterion 195.65

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model_Term & & & & Gamma & Sigma S & Sigma/SE & \% C \\
\hline idv(spl(age,7)) & IDV_V & & 5 & 2.17100 & 12.2471 & 1.09 & 0 P \\
\hline Residual & SCA_V & & 35 & 1.000000 & 5.64123 & 1.72 & 0 P \\
\hline us(2).id(Tree) & & & & effects & & & \\
\hline 2 & US_V & 1 & 1 & 5.61715 & 31.6877 & 1.26 & 0 P \\
\hline 2 & US_C & 2 & 1 & -0.124098E-01 & -0.700063E-01 & \(1-0.85\) & 0 P \\
\hline 2 & US_V & 2 & 2 & \(0.108290 \mathrm{E}-03\) & \(0.610886 \mathrm{E}-03\) & 31.41 & 0 P \\
\hline idv(spl(age,7).Tree) & ID_V & & 1 & 1.38313 & 7.80258 & 1.48 & 0 P \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{Covariance/Variance/Correlation Matrix US Tree
\[
\begin{array}{cl}
31.69 & -0.5032 \\
-0.7001 \mathrm{E}-01 & 0.6109 \mathrm{E}-03
\end{array}
\]}} \\
\hline & & & & & & & \\
\hline
\end{tabular}
Source of Variation
9 mu
3 age
5 Season
\begin{tabular}{rcrr}
Wald F & statistics & & \\
NumDF & DenDF & F-inc & P-inc \\
1 & 2.4 & 169.87 & 0.006 \\
1 & 2.4 & 92.78 & 0.011 \\
1 & 8.8 & 108.49 & \(<.001\)
\end{tabular}

Figure 16.15: Trellis plot of trunk circumference for each tree at sample dates (adjusted for season effects), with fitted profiles across time and confidence intervals

Figure 16.15 presents the predicted growth over time for individual trees and a marginal prediction for trees with approximate confidence intervals (\(2 \pm \times\) standard The conclusions from this analysis are quite different from those obtained by the nonlinear mixed effects

\subsection*{16.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines -} Oranges
analysis. The individual curves for each tree are not convincingly modelled by a logistic function. Figure 16.16 presents a plot of the residuals from the nonlinear model fitted on p340 of Pinheiro and Bates (2000). The distinct pattern in the residuals, which is the same for all trees is taken up in our analysis by the season term.

Figure 16.16: Plot of the residuals from the nonlinear model of Pinheiro and Bates

\subsection*{16.10 Multivariate animal genetics data - Sheep}

The analysis of incomplete or unbalanced multivariate data often presents computational difficulties. These difficulties are exacerbated by either the number of random effects in the linear mixed model, the number of traits, the complexity of the variance models being fitted to the random effects or the size of the problem. In this section we illustrate two approaches to the analysis of a complex set of incomplete multivariate data.

Much of the difficulty in conducting such analyses in ASReml centres on obtaining good starting values. Derivative based algorithms such as the AI algorithm can be unreliable when fitting complex variance structures unless good starting values are available. Poor starting values may result in divergence of the algorithm or slow convergence. A particular problem with fitting unstructured variance models is keeping the estimated variance matrix positive definite. These are not simple issues and in the following we present a pragmatic approach to them.

The data are taken from a large genetic study on Coopworth lambs. A total of 5 traits, namely weaning weight (wwt), yearling weight (ywt), greasy fleece weight (gfw), fibre diameter (fdm) and ultrasound fat depth at the C site (fat) were measured on 7043 lambs. The lambs were the progeny of 92 sires and 3561 dams, produced from 4871 litters over 49 flock-year combinations. Not all traits were measured on each group. No pedigree data was available for e dams.

The aim of the analysis is to estimate heritability \(\left(h^{2}\right)\) of each trait and to estimate the genetic correlations between the five traits. We will present two approaches, a half-sib analysis and an analysis based on the use of an animal model, which directly defines the genetic covariance between the progeny and sires and dams.

The data fields included factors defining sire, dam and lamb (tag), covariates such as age, the age of the lamb at a set time, brr the birth rearing rank (\(1=\) born single raised single, \(2=\) born twin raised single, \(3=\) born twin raised twin and \(4=\) other), sex (M, F) and grp a factor indicating the flock-year combination.

\subsection*{16.10.1 Half-sib analysis}

In the half-sib analysis we include terms for the random effects of sires, dams and litters. In univariate analyses the variance component for sires is denoted by \(\sigma_{s}^{2}=\frac{1}{4} \sigma_{A}^{2}\) where \(\sigma_{A}^{2}\) is the additive genetic variance, the variance component for dams is denoted by \(\sigma_{d}^{2}=\frac{1}{4} \sigma_{A}^{2}+\sigma_{m}^{2}\) where \(\sigma_{m}^{2}\) is the maternal variance component and the variance component for litters is denoted by \(\sigma_{l}^{2}\) and represents variation attributable to the particular mating.

For a multivariate analysis these variance components for sires, dams and litters are, in theory replaced by unstructured matrices, one for each term. Additionally we assume the residuals for each trait may be correlated. Thus for this example we would like to fit a total of 4 unstructured variance models. For such a situation, it is sensible to commence

\subsection*{16.10 Multivariate animal genetics data - Sheep}

Table 16.13: REML estimates of a subset of the variance parameters for each trait for the genetic example, expressed as a ratio to their asymptotic s.e.
\begin{tabular}{rccccc}
\hline term & wwt & ywt & gfw & fdm & fat \\
\hline sire & 3.68 & 3.57 & 3.95 & 1.92 & 1.92 \\
dam & 6.25 & 4.93 & 2.78 & 0.37 & 0.05 \\
litter & 8.79 & 0.99 & 2.23 & 1.91 & 0.00 \\
age.grp & 2.29 & 1.39 & 0.31 & 1.15 & 1.74 \\
sex.grp & 2.90 & 3.43 & 3.70 & - & 1.83 \\
\hline \hline
\end{tabular}
the modelling process with a series of univariate analyses. These give starting values for the diagonals of the variance matrices, but also indicate what variance components are estimable. The ASReml job for the univariate analyses is
```

!RENAME 1 !ARG 1 2 3 4 5 \#Does 5 runs one for each trait
Multivariate Sire \& Dam model
!DOPART \$1
!IF \$1 == 1 !ASSIGN YV wwt \#sets up dependent variable to each trait in turn
!IF \$1 == 2 !ASSIGN YV ywt
!IF \$1 == 3 !ASSIGN YV gfw
!IF \$1 == 4 !ASSIGN YV fdm
!IF \$1 == 5 !ASSIGN YV fat
tag
sire 92 !I
dam 3561 !I
grp 49
sex
brr 4
litter 4871
age
wwt !MO \# !MO identifies missing values
ywt !MO
gfw !MO
fdm !MO
fat !M0
coop.fmt
!PART 1 2 3 5
\$YV ~ mu age brr sex age.sex !r idv(sire) idv(dam) idv(lit) idv(age.grp),
idv(sex.grp) !f grp \#traits are substituted for \$YV
!PART 4 \#leaves out sex.grp for fdm
$YV ~ mu age brr sex age.sex !r idv(sire) idv(dam) idv(lit) idv(age.grp),
!f grp #$fdm is substituted for \$YV

```

Tables 16.13 and 16.14 present the summary of these analyses. Fibre diameter was measured on only 2 female lambs and so interactions with sex were not fitted. The dam variance component was quite small for both fibre diameter and fat. The REML estimate of the variance component associated with litters was effectively zero for fat.

Table 16.14: Wald F statistics of the fixed effects for each trait for the genetic example
\begin{tabular}{llllll}
\hline term & wwt & ywt & gfw & fdm & fat \\
\hline & & & & & \\
age & 331.3 & 67.1 & 52.4 & 2.6 & 7.5 \\
brr & 554.6 & 73.4 & 14.9 & 0.3 & 13.9 \\
sex & 196.1 & 123.3 & 0.2 & 2.9 & 0.6 \\
age.sex & 10.3 & 1.7 & 1.9 & - & 5.0 \\
\hline \hline
\end{tabular}

Thus in the multivariate analysis we consider fitting the following models to the sire, dam and litter effects,
\[
\begin{aligned}
\operatorname{var}\left(\boldsymbol{u}_{s}\right) & =\boldsymbol{\Sigma}_{s} \otimes \boldsymbol{I}_{92} \\
\operatorname{var}\left(\boldsymbol{u}_{d}\right) & =\boldsymbol{\Sigma}_{d} \otimes \boldsymbol{I}_{3561} \\
\operatorname{var}\left(\boldsymbol{u}_{l}\right) & =\boldsymbol{\Sigma}_{l} \otimes \boldsymbol{I}_{4891}
\end{aligned}
\]
where \(\boldsymbol{\Sigma}_{s}^{5 \times 5}, \boldsymbol{\Sigma}_{d}^{3 \times 3}\) and \(\boldsymbol{\Sigma}_{l}^{4 \times 4}\) are positive definite symmetric matrices corresponding to the between traits variance matrices for sires, dams and litters respectively. The variance matrix for dams does not involve fibre diameter and fat depth, while the variance matrix for litters does not involve fat depth. The effects in each of the above vectors are ordered levels within traits. Lastly we assume that the residual variance matrix is given by
\[
\boldsymbol{\Sigma}_{e} \otimes \boldsymbol{I}_{7043}
\]

Table 16.15 presents the sequence variance models fitted to each of the four random terms sire, dam, litter and error in the ASReml job
```

!RENAME 1 !ARG 1 \#CHANGE 1 TO 2 OR 3 FOR OTHER PATHS
Multivariate Sire \& Dam
!DOPATH \$1
tag
sire 92 !I
dam 3561 !I
grp 49
sex
brr 4
litter 4871
age
wwt !MO \# !MO identifies missing values
ywt !MO
gfw !MO
fdm !MO
fat !MO
!PATH 1
coop.fmt
!PATH 2
coop.fmt !CONTINUE coopmf1.rsv \# uses initial values from previous .rsv file

```

\subsection*{16.10 Multivariate animal genetics data - Sheep}
```

!PATH 3
coop.fmt !CONTINUE coopmf2.rsv
!PATH O \#SETTING UP TRAIT COMBINATIONS FOR DIFFERENT MODEL TERMS
!SUBSET TrDam123 Trait 1 2 3 0 0
!SUBSET TrLit1234 Trait 1 2 3 4 0
!SUBSET TrAG1245 Trait 1 2 4 5
!SUBSET TrSG123 Trait 1 2 3 0 0
\#USING !ASSIGN TO MAKE SPECIFICATION CLEARER
\#ASSIGN SIRE DAM LITTER AND RESIDUAL INITIAL VALUES FROM UNIVARIATE ANALYSES
!ASSIGN SDIAGI !INIT 0.608 1.298 0.015 0.197 0.035 \#Initial sire variances
!ASSIGN DDIAGI !INIT 2.2 4.14 0.018
!ASSIGN LDIAGI !INIT 3.74 0.97 0.019 0.941
!ASSIGN RUSI !< !INIT 9.27 0.0 16.48 0.0 0.0 0.14
0.0 0.0 0.0 3.37 0.0 0.0 0.0 0.0 1.14 !>
!ASSIGN VARF !<
diag(TrAG1245 !INIT 0.0024 0.0019 0.0020 0.00026).age.grp,
diag(TrSG123 !INIT 0.93 16.0 0.28).sex.grp !>

```
!PART 1 \#DIAGONAL FOR SIRE DAM AND LITTER UNSTRUCTURED FOR RESIDUAL
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r \$VARF, diag(Trait \$SDIAGI).id(sire) diag(TrDam123 \$DDIAGI).id(dam) diag(TrLit1234 \$LDIAGI).id(lit), !f Trait.grp
residual id(units).us(Trait \$RUSI)
!PART 2 \#CHANGE DIAGONAL TO XFA1 FOR SIRE DAM AND LITTER
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r \$VARF,
xfa1(Trait).id(sire) xfa1(TrDam123).id(dam) xfa1 (TrLit1234).id(lit),
!f Trait.grp mv
residual id(units).us(Trait)
!PART 3 \#CHANGE XFA1 TO UNSTRUCTURED FOR SIRE AND LITTER
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r \$VARF,
us(Trait).id(sire) xfa1(TrDam123).id(dam) us(TrLit1234).id(lit),
!f Trait.grp mv
residual id(units).us(Trait)

\section*{!PART 3}

VPREDICT !DEFINE
\#USING !ASSIGN TO GIVE CONCISE VPREDICT
!ASSIGN lusT lit;us(TrLit1234) \# us(TrLit1234).id(lit);us(TrLit1234)
! ASSIGN susT sire;us(Trait) \#us(Trait).id(sire); us (Trait)
!ASSIGN uusT id(units).us(Trait); us(Trait)
X Damv xfa1(TrDam123) \# defines 54:59
F phen \$uusT[1:6]+\$susT[1:6]+\$lusT[1:6]+xfa1 (TrDam123)
\# defines [1:6] elements of phen
\# defines 60:65= \(1: 6+\quad 23: 28+\quad 44: 49+54: 59\)
F phen \$uusT[7:10]+\$susT[7:10]+ \$lusT[7:10]
\# defines [7:10] elements of phen
\# defines 66:69= \(7: 10+29: 32+\quad 50: 53\)
F phen \$uusT[11:15]+\$susT[11:15]
\# defines [11:15] elements of phen
```


# defines 70:74= 11:15 + 33:37

F Direct $susT *4. #defines 75: 89= 23:37 * 4.
F Maternal Damv -$susT[1:6] \#defines 90: 95= 54:59 - 23:28
F resid phen - \$susT \#defines 96:110= 60:74 - 23-37
H WWTh2 Direct[1] phen[1] \#defines 111= 75/ 60
H YWTh2 Direct[3] phen[3] \#defines 112= 77/ 62
H GFWh2 Direct[6] phen[6] \#defines 113= 80/ 65
H FDMh2 Direct[10] phen[10] \#defines 114= 84/ 69
H FATh2 Direct[15] phen[15] \#defines 115= 89/ 74
R GenCor \$susT \#defines 116:125 from 23:37
R MatCor Maternal \#defines 126:129 from 90:95

```

Table 16.15: Variance models fitted for each part of the ASReml job in the analysis of the genetic example
\begin{tabular}{rrrrrr}
\hline & & & & \\
term & matrix & !PATH 1 & !PATH 2 & !PATH 3 \\
\hline sire & \(\boldsymbol{\Sigma}_{s}\) & diag & fa1 & us \\
dam & \(\boldsymbol{\Sigma}_{d}\) & diag & fa1 & fa1 \\
litter & \(\boldsymbol{\Sigma}_{l}\) & diag & fa1 & us \\
error & \(\boldsymbol{\Sigma}_{e}\) & us & us & us \\
\hline LogL & & -1566.45 & -1488.11 & -1480.89 \\
Parameters & & 36 & 48 & 55 \\
\hline \hline
\end{tabular}

The specification in Release 3 required specification of initial values for variance parameters and also through the use of ! CONTINUE the generation of initial values from previous analyses. In Release 4, with the functional specification and no initial values specified, ASReml will estimate initial values. In this example we start by fitting diagonal matrices for sire,dam and litter using initial values from univariate analyses and estimate an unstructured residual matrix. Unfortunately ASReml does not yet have an automatic way of taking the estimates from the univariate analyses and using them in the diagonal analysis. The Log-likelihood from this run is -20000 - 1566.45 . Once the model from PATH 1 has run we can rerun the analysis changing ! ARG 1 to! ARG 2 to obtain the next analysis. With the statement !CONTINUE coopmf1.rsv ASReml generates initial values from the coopmf1.rsv file, if no filename is given ASReml will look for the previous .rsv file to generate initial values. In analysis 2 we get estimates of the sire, dam and litter matrices based on a factor analysis parameterization. This can give better initial values for unstructured matrices and indicate if the estimated matrices are near singularity. The log-likelihood from this run is \(-20000-1488.11\). In this case the dam variance parameters are
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Source & Model & terms & Gamma & Sigma S & Sigma/SE & \multirow[t]{2}{*}{\% C} \\
\hline xfa1 (TrDam123).id(dam) & & 14244 & effects & & & \\
\hline TrDam123 & XFA_V & 01 & 0.405222 & 0.405222 & 1.30 & 0 P \\
\hline TrDam123 & XFA_V & 02 & 0.00000 & 0.00000 & 0.00 & 0 F \\
\hline TrDam123 & XFA_V & 03 & \(0.616712 \mathrm{E}-02\) & 0.616712E-02 & 1.14 & 0 P \\
\hline TrDam123 & XFA_L & 11 & 1.29793 & 1.29793 & 9.05 & 0 \\
\hline TrDam123 & XFA_L & 12 & 1.68814 & 1.68814 & 9.96 & 0 P \\
\hline TrDam123 & XFA_L & 13 & 0.124492 & 0.124492 & 6.02 & \\
\hline
\end{tabular}

\subsection*{16.10 Multivariate animal genetics data - Sheep}

And one of the dam specific variances is zero. The resulting dam matrix is
\begin{tabular}{ccll}
Covariance/Variance/Correlation Matrix XFA xfa1(TrDam123).id(dam) \\
2.090 & 0.8981 & 0.7590 & 0.8981 \\
2.190 & 2.845 & 0.8451 & 1.0000 \\
0.1613 & 0.2096 & \(0.2162 \mathrm{E}-01\) & 0.8451 \\
1.298 & 1.687 & 0.1243 & 1.0000
\end{tabular}

And the eigen analysis in the .res file is
\begin{tabular}{crrr}
Eigen Analysis & of XFA matrix for & xfa1(TrDam123).id(dam) \\
Eigen values & 4.704 & 0.246 & 0.006 \\
Percentage & 94.919 & 4.957 & 0.124 \\
1 & 0.6431 & -0.7647 & 0.0009 \\
2 & 0.7637 & 0.6404 & -0.0743 \\
3 & 0.0563 & 0.0484 & 0.9972
\end{tabular}
showing that the smallest eigenvalue is 0.006 . On the basis of this ASReml with ! ARG 3, fits unstructured matrices for sire and litter and xfa1 for dam using initial values derived from the previous analysis in coopmf2.rsv. Portions of the .asr file from the Path 3 run are
```

Notice: ReStartValues taken from coopmf2.rsv
Notice: LogL values are reported relative to a base of -20000.000
Notice: US matrix updates modified 1 time(s) to keep them positive definite.
Notice: }1084\mathrm{ singularities detected in design matrix.
1 LogL=-1488.11 S2= 1.00000 18085 df : 11 components restrained
2 LogL=-1486.27 S2=1.00000 18085 df : 2 components restrained
3 LogL=-1483.34 S2= 1.00000 18085 df : 1 components restrained
4 LogL=-1481.89 S2= 1.00000 18085 df
5 LogL=-1481.10 S2= 1.00000 18085 df
6 LogL=-1480.91 S2= 1.00000 18085 df
7 LogL=-1480.89 S2= 1.00000 18085 df
8 LogL=-1480.89 S2= 1.00000 18085 df
9 LogL=-1480.89 S2= 1.00000 18085 df
- - - Results from analysis of wwt ywt gfw fdm fat - - -
Notice: US structures were modified 1 times to make them positive definite.
If ASReml has fixed the structure [flagged by B], it may not have
converged to a maximum likelihood solution.
Used !EMFLAG O Single standard EM update when AI update unacceptable
You could try !GU (negative definite US) or use XFA instead.
Akaike Information Criterion 43065.77 (assuming 52 parameters).
Bayesian Information Criterion 43471.52

Model_Term				Sigma	Sigma	Sigma/SE	\% C
id(units).us(Trait)		352		effects			
Trait	US_V	1	1	9.46109	9.46109	33.29	0 P
Trait	US_C	2	1	7.34181	7.34181	20.55	0 P
Trait	US_V	2	2	17.6050	17.6050	27.09	0 P
Trait	US_C	3	1	0.272536	0.272536	8.38	0 P
Trait	US_C	3	2	0.668009	0.668009	13.99	0 P

```
16.10 Multivariate animal genetics data - Sheep
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Trait & US_V & 3 & 3 & 0.141595 & 0.141595 & 23.70 & & P \\
\hline Trait & US_C & 4 & 1 & 0.963017 & 0.963017 & 2.89 & & P \\
\hline Trait & US_C & 4 & 2 & 1.99771 & 1.99771 & 3.64 & & P \\
\hline Trait & US_C & 4 & 3 & 0.286984 & 0.286984 & 5.08 & & P \\
\hline Trait & US_V & 4 & 4 & 3.64374 & 3.64374 & 9.00 & & P \\
\hline Trait & US_C & 5 & 1 & 0.850282 & 0.850282 & 8.48 & & P \\
\hline Trait & US_C & 5 & 2 & 2.48313 & 2.48313 & 19.33 & & P \\
\hline Trait & US_C & 5 & 3 & \(0.786089 \mathrm{E}-01\) & \(0.786089 \mathrm{E}-01\) & 7.04 & & P \\
\hline Trait & US_C & 5 & 4 & 0.115894 & 0.115894 & 1.17 & & P \\
\hline Trait & US_V & 5 & 5 & 1.63175 & 1.63175 & 32.90 & & P \\
\hline diag(TrSG123).sex.grp & & & 47 & effects & & & & \\
\hline TrSG123 & DIAG_V & & 1 & 1.01106 & 1.01106 & 2.97 & & P \\
\hline TrSG123 & DIAG_V & & 2 & 16.0229 & 16.0229 & 3.51 & & P \\
\hline TrSG123 & DIAG_V & & 3 & 0.280259 & 0.280259 & 3.71 & & P \\
\hline diag(TrAG1245).age.grp & & & 96 & effects & & & & \\
\hline TrAG1245 & DIAG_V & & 1 & \(0.132755 \mathrm{E}-02\) & \(0.132755 \mathrm{E}-02\) & 2.01 & & P \\
\hline TrAG1245 & DIAG_V & & 2 & \(0.976533 \mathrm{E}-03\) & \(0.976533 \mathrm{E}-03\) & 1.21 & & P \\
\hline TrAG1245 & DIAG_V & & 3 & \(0.176684 \mathrm{E}-02\) & \(0.176684 \mathrm{E}-02\) & 1.13 & & P \\
\hline TrAG1245 & DIAG_V & & 4 & \(0.208076 \mathrm{E}-03\) & \(0.208076 \mathrm{E}-03\) & 1.62 & & P \\
\hline us(Trait).id(sire) & & & & 460 effects & & & & \\
\hline Trait & US_V & 1 & 1 & 0.593942 & 0.593942 & 3.68 & & P \\
\hline Trait & US_C & 2 & 1 & 0.677334 & 0.677334 & 3.18 & & P \\
\hline Trait & US_V & 2 & 2 & 1.55632 & 1.55632 & 3.90 & & P \\
\hline Trait & US_C & 3 & 1 & \(0.280482 \mathrm{E}-01\) & \(0.280482 \mathrm{E}-01\) & 1.53 & & P \\
\hline Trait & US_C & 3 & 2 & \(0.287861 \mathrm{E}-02\) & \(0.287861 \mathrm{E}-02\) & 0.10 & & P \\
\hline Trait & US_V & 3 & 3 & \(0.150192 \mathrm{E}-01\) & \(0.150192 \mathrm{E}-01\) & 4.01 & & P \\
\hline Trait & US_C & 4 & 1 & \(0.596227 \mathrm{E}-01\) & \(0.596227 \mathrm{E}-01\) & 0.54 & & P \\
\hline Trait & US_C & 4 & 2 & -0.657014E-01 & -0.657014E-01 & -0.41 & & P \\
\hline Trait & US_C & 4 & 3 & \(0.477561 \mathrm{E}-02\) & \(0.477561 \mathrm{E}-02\) & 0.25 & & P \\
\hline Trait & US_V & 4 & 4 & 0.157854 & 0.157854 & 1.84 & & P \\
\hline Trait & US_C & 5 & 1 & \(0.407282 \mathrm{E}-01\) & \(0.407282 \mathrm{E}-01\) & 0.99 & & P \\
\hline Trait & US_C & 5 & 2 & 0.133338 & 0.133338 & 1.98 & & P \\
\hline Trait & US_C & 5 & 3 & \(0.877122 \mathrm{E}-03\) & \(0.877122 \mathrm{E}-03\) & 0.15 & & P \\
\hline Trait & US_C & 5 & 4 & -0.472300E-01 & -0.472300E-01 & -1.53 & & P \\
\hline Trait & US_V & 5 & 5 & \(0.326718 \mathrm{E}-01\) & \(0.326718 \mathrm{E}-01\) & 2.00 & & P \\
\hline xfa1(TrDam123).id(dam) & & & & 4244 effects & & & & \\
\hline TrDam123 & XFA_V & 0 & 1 & \(0.126746 \mathrm{E}-01\) & \(0.126746 \mathrm{E}-01\) & 0.03 & & P \\
\hline TrDam123 & XFA_V & 0 & 2 & 0.00000 & 0.00000 & 0.00 & & F \\
\hline TrDam123 & XFA_V & 0 & 3 & 0.661114E-02 & \(0.661114 \mathrm{E}-02\) & 1.25 & & P \\
\hline TrDam123 & XFA_L & 1 & 1 & 1.46479 & 1.46479 & 8.06 & & P \\
\hline TrDam123 & XFA_L & 1 & 2 & 1.51911 & 1.51911 & 7.30 & & P \\
\hline TrDam123 & XFA_L & 1 & 3 & 0.110770 & 0.110770 & 5.08 & & P \\
\hline us(TrLit1234).id(lit) & & & & 9484 effects & & & & \\
\hline TrLit1234 & US_V & 1 & 1 & 3.55275 & 3.55275 & 8.54 & & P \\
\hline TrLit1234 & US_C & 2 & 1 & 1.53980 & 1.53980 & 3.30 & & P \\
\hline TrLit1234 & US_V & 2 & 2 & 2.55497 & 2.55497 & 3.15 & & P \\
\hline TrLit1234 & US_C & 3 & 1 & -0.310141E-01 & -0.310141E-01 & -0.73 & & P \\
\hline TrLit1234 & US_C & 3 & 2 & \(0.450851 \mathrm{E}-01\) & \(0.450851 \mathrm{E}-01\) & 0.74 & & P \\
\hline TrLit1234 & US_V & 3 & 3 & \(0.191030 \mathrm{E}-01\) & \(0.191030 \mathrm{E}-01\) & 2.43 & & P \\
\hline TrLit1234 & US_C & 4 & 1 & -0.721026E-01 & -0.721026E-01 & -0.22 & & P \\
\hline TrLit1234 & US_C & 4 & 2 & -0.794020 & -0.794020 & -1.55 & & P \\
\hline TrLit1234 & US_C & 4 & 3 & -0.417001E-01 & -0.417001E-01 & -0.76 & & P \\
\hline TrLit1234 & US_V & 4 & 4 & 0.897161 & 0.897161 & 2.29 & & P \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{Covariance/Variance/Correlation Matrix US Residual}} \\
\hline \(9.461 \quad 0.5689\) & 0.235 & & & 0.1640 & 0.2164 & & & \\
\hline
\end{tabular}

\subsection*{16.10 Multivariate animal genetics data - Sheep}
\begin{tabular}{|c|c|c|c|c|}
\hline \(7.342 \quad 17.60\) & 0.4231 & 0.2494 & 0.4633 & \\
\hline \(0.2725 \quad 0.6680\) & 0.1416 & 0.3995 & 0.1635 & \\
\hline \(0.9630 \quad 1.998\) & 0.2870 & 3.644 & \(0.4753 \mathrm{E}-01\) & \\
\hline 0.85032 .483 & \(0.7861 \mathrm{E}-01\) & 10.1159 & 1.632 & \\
\hline \multicolumn{5}{|l|}{Covariance/Variance/Correlation Matrix US us(Trait).id(sire)} \\
\hline 0.59390 .7045 & 0.2970 & 0.1947 & 0.2924 & \\
\hline 0.67731 .556 & \(0.1883 \mathrm{E}-01\) & -0.1326 & 0.5913 & \\
\hline \(0.2805 \mathrm{E}-01 \quad 0.2879 \mathrm{E}-02\) & \(0.1502 \mathrm{E}-01\) & 1 0.9808E-01 & \(0.3960 \mathrm{E}-01\) & \\
\hline 0.5962E-01-0.6570E-01 & \(0.4776 \mathrm{E}-02\) & 20.1579 & -0.6577 & \\
\hline \(0.4073 \mathrm{E}-010.1333\) & \(0.8771 \mathrm{E}-03\) & \(3-0.4723 \mathrm{E}-01\) & 0.3267E-01 & \\
\hline \multicolumn{5}{|l|}{Covariance/Variance/Correlation Matrix XFA xfa1(TrDam123).id(dam)} \\
\hline \(2.158 \quad 0.9961\) & 0.8035 & 0.9961 & & \\
\hline \(2.225 \quad 2.312\) & 0.8066 & 1.0000 & & \\
\hline \(0.1623 \quad 0.1687\) & \(0.1891 \mathrm{E}-01\) & 10.8066 & & \\
\hline \(1.463 \quad 1.521\) & 0.1109 & 1.0000 & & \\
\hline \multicolumn{5}{|l|}{Covariance/Variance/Correlation Matrix US us(TrLit1234).id(lit)} \\
\hline 3.553 0.5111 - & -0.1190 & -0.4039E-01 & & \\
\hline \(1.540 \quad 2.555\) & 0.2041 & -0.5244 & & \\
\hline -0.3101E-01 0.4509E-01 & 0.1910E-01 & \(1-0.3185\) & & \\
\hline -0.7210E-01-0.7940 & -0.4170E-01 & 10.8972 & & \\
\hline \multicolumn{5}{|c|}{Wald F statistics} \\
\hline Source of Variation & & NumDF & F-inc & \\
\hline 19 Trait.age & & 5 & 100.11 & \\
\hline 20 Trait.brr & & 15 & 116.72 & \\
\hline 21 Trait.sex & & 5 & 77.97 & \\
\hline 23 Trait.age.sex & & 4 & 4.17 & \\
\hline 29 diag(TrSG123).sex.grp & & 147 ef & ects fitted (& 37 are zero) \\
\hline 26 diag(TrAG1245).age.gr & & 196 eff & ects fitted (& 69 are zero) \\
\hline 36 Trait.grp & & 180 eff & ects fitted (+ & 65 singular) \\
\hline 31 us(Trait).sire & & 460 eff & ects fitted (& 20 are zero) \\
\hline \(33 \mathrm{xfa1}(\mathrm{TrDam} 123)\). dam & & 10683 eff & ects fitted (& 8 are zero) \\
\hline 35 us(TrLit1234).lit & & 19484 ef & ects fitted (& 20 are zero) \\
\hline
\end{tabular}

The REML estimates of all the variance matrices except for the dam components are positive definite. Heritabilities for each trait can be calculated using the VPREDICT facility of ASReml. The heritability is given by
\[
h^{2}=\frac{\sigma_{A}^{2}}{\sigma_{P}^{2}}
\]
where \(\sigma_{P}^{2}\) is the phenotypic variance and is given by
\[
\sigma_{P}^{2}=\sigma_{s}^{2}+\sigma_{d}^{2}+\sigma_{l}^{2}+\sigma_{e}^{2}
\]
recalling that
\[
\begin{aligned}
\sigma_{s}^{2} & =\frac{1}{4} \sigma_{A}^{2} \\
\sigma_{d}^{2} & =\frac{1}{4} \sigma_{A}^{2}+\sigma_{m}^{2}
\end{aligned}
\]

In the half-sib analysis we only use the estimate of additive genetic variance from the sire variance component. ASReml then carries out the VPREDICT instructions in the .asr file, stores the instructions in a .pin file and produces the following output in a .pvc file.
```

ASReml 5.0 [01 Apr 2014] Multivariate Sire \& Dam coopmf3.pvc created 16 Nov 2014 21:51:35.702

```
- - - Results from analysis of wwt ywt gfw fdm fat - - -
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{35200 effects} \\
\hline 1 id(units).us(Trait); us(Trait) & V & 1 & 1 & 9.46109 & 0.284202 \\
\hline 2 id(units).us(Trait); us(Trait) & C & 2 & 1 & 7.34181 & 0.357266 \\
\hline 3 id(units).us(Trait); us(Trait) & V & 2 & 2 & 17.6050 & 0.649871 \\
\hline 4 id(units).us(Trait); us(Trait) & C & 3 & 1 & 0.272536 & \(0.325222 \mathrm{E}-01\) \\
\hline 5 id(units).us(Trait); us(Trait) & C & 3 & 2 & 0.668009 & \(0.477490 \mathrm{E}-01\) \\
\hline 6 id(units).us(Trait); us(Trait) & V & 3 & 3 & 0.141595 & \(0.597447 \mathrm{E}-02\) \\
\hline 7 id(units).us(Trait); us (Trait) & C & 4 & 1 & 0.963017 & 0.333224 \\
\hline 8 id(units).us(Trait); us(Trait) & C & 4 & 2 & 1.99771 & 0.548821 \\
\hline 9 id(units).us(Trait); us(Trait) & C & 4 & 3 & 0.286984 & \(0.564929 \mathrm{E}-01\) \\
\hline 10 id(units).us(Trait); us(Trait) & V & 4 & 4 & 3.64374 & 0.404860 \\
\hline 11 id(units).us(Trait); us(Trait) & C & 5 & 1 & 0.850282 & 0.100269 \\
\hline 12 id(units).us(Trait); us(Trait) & C & 5 & 2 & 2.48313 & 0.128460 \\
\hline 13 id(units).us(Trait); us(Trait) & C & 5 & 3 & \(0.786089 \mathrm{E}-01\) & \(0.111660 \mathrm{E}-01\) \\
\hline 14 id(units).us(Trait); us(Trait) & C & 5 & 4 & 0.115894 & \(0.990547 \mathrm{E}-01\) \\
\hline 15 id(units).us(Trait); us(Trait) & V & 5 & 5 & 1.63175 & \(0.495973 \mathrm{E}-01\) \\
\hline diag(TrSG123).sex.grp 147 effects & & & & & \\
\hline 16 diag(TrSG123).sex.grp; diag(TrSG123) & V & & 1 & 1.01106 & 0.340424 \\
\hline 17 diag(TrSG123).sex.grp; diag(TrSG123) & V & & 2 & 16.0229 & 4.56493 \\
\hline 18 diag(TrSG123).sex.grp; diag(TrSG123) & V & & 3 & 0.280259 & \(0.755415 \mathrm{E}-01\) \\
\hline diag(TrAG1245).age.grp 196 effects & & & & & \\
\hline 19 diag(TrAG1245).age.grp; diag(TrAG1245) & V & & 1 & \(0.132755 \mathrm{E}-02\) & \(0.660473 \mathrm{E}-03\) \\
\hline 20 diag(TrAG1245).age.grp; diag(TrAG1245) & V & & 2 & \(0.976533 \mathrm{E}-03\) & \(0.807052 \mathrm{E}-03\) \\
\hline \(21 \mathrm{diag}(\operatorname{Tr} A G 1245) . \mathrm{age} . \mathrm{grp} ; \mathrm{diag}(\operatorname{Tr} A G 1245)\) & V & & 3 & \(0.176684 \mathrm{E}-02\) & \(0.156358 \mathrm{E}-02\) \\
\hline 22 diag(TrAG1245).age.grp; diag (TrAG1245) & V & & 4 & \(0.208076 \mathrm{E}-03\) & \(0.128442 \mathrm{E}-03\) \\
\hline us(Trait).id(sire) 460 effects & & & & & \\
\hline 23 us(Trait).id(sire); us(Trait) & V & 1 & 1 & 0.593942 & 0.161397 \\
\hline 24 us(Trait).id(sire); us(Trait) & C & 2 & 1 & 0.677334 & 0.212998 \\
\hline 25 us(Trait).id(sire); us(Trait) & V & 2 & 2 & 1.55632 & 0.399056 \\
\hline 26 us(Trait).id(sire); us (Trait) & C & 3 & 1 & \(0.280482 \mathrm{E}-01\) & \(0.183322 \mathrm{E}-01\) \\
\hline 27 us(Trait).id(sire); us(Trait) & C & 3 & 2 & \(0.287861 \mathrm{E}-02\) & \(0.287861 \mathrm{E}-01\) \\
\hline 28 us(Trait).id(sire); us(Trait) & V & 3 & 3 & \(0.150192 \mathrm{E}-01\) & \(0.374544 \mathrm{E}-02\) \\
\hline 29 us(Trait).id(sire); us(Trait) & C & 4 & 1 & \(0.596227 \mathrm{E}-01\) & 0.110412 \\
\hline 30 us(Trait).id(sire); us(Trait) & C & 4 & 2 & -0.657014E-01 & -0.410000 \\
\hline 31 us(Trait).id(sire); us(Trait) & C & 4 & 3 & \(0.477561 \mathrm{E}-02\) & \(0.191024 \mathrm{E}-01\) \\
\hline 32 us(Trait).id(sire); us(Trait) & V & 4 & 4 & 0.157854 & \(0.857902 \mathrm{E}-01\) \\
\hline 33 us(Trait).id(sire); us(Trait) & C & 5 & 1 & \(0.407282 \mathrm{E}-01\) & \(0.411396 \mathrm{E}-01\) \\
\hline 34 us(Trait).id(sire); us(Trait) & C & 5 & 2 & 0.133338 & \(0.673424 \mathrm{E}-01\) \\
\hline 35 us(Trait).id(sire); us (Trait) & C & 5 & 3 & \(0.877122 \mathrm{E}-03\) & \(0.584748 \mathrm{E}-02\) \\
\hline 36 us(Trait).id(sire); us(Trait) & C & 5 & 4 & -0.472300E-01 & -1.53000 \\
\hline 37 us(Trait).id(sire); us(Trait) & V & 5 & 5 & \(0.326718 \mathrm{E}-01\) & \(0.163359 \mathrm{E}-01\) \\
\hline xfa1(TrDam123).id(dam) 14244 effects & & & & & \\
\hline \(38 \mathrm{xfa1}(\mathrm{TrDam123)}\).id(dam) \(\mathrm{xfa1}(\mathrm{TrDam123)}\) & V & 0 & 1 & \(0.126746 \mathrm{E}-01\) & 0.422487 \\
\hline \(39 \mathrm{xfa1}(\mathrm{TrDam123).id(dam)}\); xfa1(TrDam123) & V & 0 & 2 & 0.00000 & 0.00000 \\
\hline 40 xfa1(TrDam123).id(dam); xfa1(TrDam123) & V & 0 & 3 & \(0.661114 \mathrm{E}-02\) & \(0.528891 \mathrm{E}-02\) \\
\hline \(41 \mathrm{xfa1}(\mathrm{TrDam} 123) . \mathrm{id}(\mathrm{dam})\); xfa1 (TrDam123) & L & 1 & 1 & 1.46479 & 0.181736 \\
\hline \(42 \mathrm{xfa1}(\mathrm{TrDam123)} . \mathrm{id}(\mathrm{dam}) ; \mathrm{xfa1}(\mathrm{TrDam123)}\) & L & 1 & 2 & 1.51911 & 0.208097 \\
\hline \(43 \mathrm{xfa1}(\mathrm{TrDam} 123) . i d(d a m) ; \mathrm{xfa1}(\mathrm{TrDam123)}\) & L & 1 & 3 & 0.110770 & \(0.218051 \mathrm{E}-01\) \\
\hline us(TrLit1234).id(lit) 19484 effects & & & & & \\
\hline 44 us(TrLit1234).id(lit); us(TrLit1234) & V & 1 & 1 & 3.55275 & 0.416013 \\
\hline
\end{tabular}

\subsection*{16.10.2 Animal model}

In this section we will illustrate the use of a pedigree file to define the genetic relationships between animals. This is an alternate method of estimating additive genetic variance for these data. The data file has been modified by adding 10000 to the dam ID (now 10001:13561) so that the lamb, sire and dam ID's are distinct. They appear as the first genetic relationships are available for this data so the data file doubles as the pedigree file. The multi-trait additive genetic variance matrix, \(\boldsymbol{\Sigma}_{A}\) of the animals (sires, dams and lambs) is given by
\[
\operatorname{var}\left(\boldsymbol{u}_{A}\right)=\boldsymbol{\Sigma}_{A} \otimes \boldsymbol{A}
\]
where \(\boldsymbol{A}\) is the genetic relationship matrix and \(\boldsymbol{u}_{A}\) are the trait BLUPs ordered animals within traits There are a total of \(10696=92+3561+7043\) animals in the pedigree.

Multivariate analysis involving several strata (here animal (direct/additive genetic), dam (maternal) and litter) typically involves several runs. The ASReml input file presented below has five parts which show the use of FA structures to get initial values for estimation of unstructured matrices, and their use when estimated unstructured matrices are not positive definite as is the case with the tag matrix here, but omits earlier runs involved

\subsection*{16.10 Multivariate animal genetics data - Sheep}
with linear model selection and obtaining initial values. This model is not equivalent to the sire/dam/litter model with respect to the animal/litter components for gfw, fd and fat.
!RENAME 1 !ARG 1 \#CHANGE 1 TO 2,3,4 OR 5 FOR OTHER PATHS
Multivariate Animal model
!DOPART \$1
tag ! P
sire 92 !I
dam ! P
grp 49
sex
brr 4
litter 4871
age
WWt !MO \# !MO identifies missing values
ywt ! MO
gfw ! MO
fdm ! MO
fat !MO
pcoop.fmt \# read pedigree from first three fields
!PATH 1 // pcoop.fmt
!PATH 2 // pcoop.fmt !CONTINUE pcoopf1.rsv !MAXI 40
!PATH 3 // pcoop.fmt !CONTINUE pcoopf2.rsv !MAXI 40
!PATH 4 // pcoop.fmt !CONTINUE pcoopf2.rsv !MAXI 40
!PATH 5 // pcoop.fmt !CONTINUE pcoopf4.rsv !MAXI 40
!PART 0
!SUBSET TrDam12 Trait 12000
!SUBSET TrLit1234 Trait 12340
!SUBSET TrAG1245 Trait 1245
!SUBSET TrSG123 Trait 12300
! SUBSET TrDa123 Trait 12300

```

!ASSIGN VARF !<
diag(TrAG1245 !INIT 0.0024 0.0019 0.0020 0.00026).age.grp,
diag(TrSG123 !INIT 0.93 16.0 0.28).sex.grp !>

```
```

!PATH 1
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r \$VARF,
diag(Trait \$TDIAGI).nrm(tag) diag(TrDam12 \$DDIAGI).nrm(dam) diag(TrLit1234 \$LDIAGI).id(lit),
!f Trait.grp
residual id(units).us(Trait \$RUSI)

```
```

!PATH 2
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r \$VARF,
xfa1(Trait).nrm(tag) xfa1(TrDam12).nrm(dam) xfa1(TrLit1234).id(lit),
!f Trait.grp
residual id(units).us(Trait)
!PATH 3
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r \$VARF,
us(Trait).nrm(tag) xfa1(TrDam12).nrm(dam) us(TrLit1234).id(lit),
!f Trait.grp
residual id(units).us(Trait)
!PATH 4
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r \$VARF,
xfa2(Trait).nrm(tag) xfa1(TrDam12).nrm(dam) us(TrLit1234).id(lit),
!f Trait.grp
residual id(units).us(Trait)
!PART 5
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r \$VARF,
xfa3(Trait).nrm(tag) xfa1(TrDam12).nrm(dam) us(TrLit1234).id(lit),
!f Trait.grp
residual id(units).us(Trait)

```

The term function(Tr).nrm(tag) now replaces the function(Tr).id(sire) and picks up part of function(TrDam12).id(dam) variation present in the half-sib analysis. This analysis uses information from both sires and dams to estimate additive genetic variance. The dam variance component is this analysis estimates the maternal variance component. It is only significant for the weaning and yearling weights. The litter variation remains unchanged. Notice again how the maternal effect is only fitted for the first 2 trait and the litter effect for the first 4 traits. The critical detail is that SUBSET is used to setup TrDam12, a variable using the first two traits. ASReml uses the relationship matrix for the dam dimension \({ }^{1}\) since dam is defined with ! \(P\). In this case there is no difference between fitting nrm (dam) and id(ide(dam)) since there is no pedigree information on dams. It is preferable to be explicit (specify nrm (dam) when the relationship matrix is required, and id(ide(dam)) in the G structure definition).

In this case PATH 1, 2 and 3 were run in turn but in PATH 3 ASReml had trouble converging because in each iteration the unstructured us (tag) matrix is not positive definite and so ASReml uses a slower EM algorithm that keeps the estimates in the parameter space but the convergence is very slow. Here is the convergence log for PATH 3
```

Notice: 15358 singularities detected in design matrix.
1 LogL=-1543.55 S2= 1.00000 18085 df : 15 components restrained
Notice: US matrix updates modified 1 time(s) to keep them positive definite.
2 LogL=-1540.93 S2= 1.00000 18085 df : 15 components restrained
Notice: US matrix updates modified 1 time(s) to keep them positive definite.

```


\footnotetext{
\({ }^{1}\) reported in the .asr file
}
```

39 LogL=-1538.33 S2= 1.00000 18085 df : 14 components restrained
40 LogL=-1538.32 S2= 1.00000 18085 df : 15 components restrained

```

To avoid this problem in PATH 4 and 5 we use xfa2 and xfa3 structures. These converge much faster. Here is the convergence \(\log\) and resulting estimates for PATH 5
```

Notice: ReStartValues taken from pcoopf4.rsv
Notice: LogL values are reported relative to a base of -20000.000
Note: XFA model: lower loadings initially held fixed.
Notice: 29764 singularities detected in design matrix.
1 LogL=-1558.44 S2= 1.00000 18085 df : 1 components restrained
2 LogL=-1541.77 S2= 1.00000 18085 df : }8\mathrm{ components restrained
3 LogL=-1538.27 S2= 1.00000 18085 df : 1 components restrained
4 LogL=-1534.53 S2= 1.00000 18085 df : 1 components restrained
5 LogL=-1532.53 S2= 1.00000 18085 df : 1 components restrained
6 LogL=-1531.90 S2= 1.00000 18085 df : 1 components restrained
Note: XFA model fitted with rotation.
7 LogL=-1531.73 S2= 1.00000 : 18085 df : 1 components restrained
8 LogL=-1531.66 S2= 1.00000 18085 df
9 LogL=-1531.64 S2= 1.00000 18085 df
10 LogL=-1531.64 S2= 1.00000 18085 df
- - - Results from analysis of wwt ywt gfw fdm fat - - -
Akaike Information Criterion 43151.28 (assuming 44 parameters).
Bayesian Information Criterion 43494.60

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model_Term & & & Sigma & Sigma & gma/SE & \% C \\
\hline id(units).us(Trait) & & 35200 & effects & & & \\
\hline Trait & US_V & 11 & 8.73848 & 8.73848 & 30.29 & 0 P \\
\hline Trait & US_C & 21 & 7.28418 & 7.28418 & 20.19 & 0 P \\
\hline Trait & US_V & 22 & 17.7519 & 17.7519 & 26.87 & 0 P \\
\hline Trait & US_C & 31 & 0.247701 & 0.247701 & 5.87 & 0 P \\
\hline Trait & US_C & 32 & 0.705206 & 0.705206 & 14.31 & 0 P \\
\hline Trait & US_V & 33 & 0.109534 & 0.109534 & 11.21 & 0 P \\
\hline Trait & US_C & 41 & 0.816946 & 0.816946 & 2.22 & 0 P \\
\hline Trait & US_C & 42 & 2.03823 & 2.03823 & 3.68 & 0 P \\
\hline Trait & US_C & 43 & 0.252623 & 0.252623 & 3.82 & 0 P \\
\hline Trait & US_V & 44 & 3.31364 & 3.31364 & 7.50 & 0 P \\
\hline Trait & US_C & 51 & 0.871291 & 0.871291 & 6.95 & 0 P \\
\hline Trait & US_C & 52 & 2.53142 & 2.53142 & 19.25 & 0 P \\
\hline Trait & US_C & 53 & \(0.821032 \mathrm{E}-01\) & \(0.821032 \mathrm{E}-01\) & 4.52 & 0 P \\
\hline Trait & US_C & 54 & 0.208739 & 0.208739 & 1.60 & 0 P \\
\hline Trait & US_V & 55 & 1.54280 & 1.54280 & 24.00 & 0 P \\
\hline diag(TrSG123).sex.grp & & 147 & effects & & & \\
\hline TrSG123 & DIAG_V & 1 & 1.01250 & 1.01250 & 2.96 & 0 P \\
\hline TrSG123 & DIAG_V & 2 & 15.2159 & 15.2159 & 3.49 & 0 P \\
\hline TrSG123 & DIAG_V & 3 & 0.279183 & 0.279183 & 3.71 & 0 P \\
\hline diag(TrAG1245) . age.grp & & 196 & effects & & & \\
\hline TrAG1245 & DIAG_V & 1 & \(0.142096 \mathrm{E}-02\) & 0.142096E-02 & 2.04 & 0 P \\
\hline TrAG1245 & DIAG_V & 2 & \(0.143897 \mathrm{E}-02\) & \(0.143897 \mathrm{E}-02\) & 1.54 & 0 P \\
\hline TrAG1245 & DIAG_V & 3 & \(0.163778 \mathrm{E}-02\) & 0.163778E-02 & 1.10 & 0 P \\
\hline TrAG1245 & DIAG_V & 4 & \(0.207274 \mathrm{E}-03\) & 0.207274E-03 & 1.61 & 0 P \\
\hline
\end{tabular}
16.10 Multivariate animal genetics data - Sheep
us(TrLit1234).id(lit)
TrLit1234
xfa1(TrDam12).id(dam)
TrDam12
TrDam12
TrDam12
TrDam12
xfa3(Trait).nrm(tag)
Trait
tag

Warning: Code B - fixed at a boundary (!GP) F - fixed by user
? - liable to change from \(P\) to B \(\quad P\) - positive definite
C - Constrained by user (!VCC) U - unbounded
S - Singular Information matrix
S means there is no information in the data for this parameter.
Very small components with Comp/SE ratios of zero sometimes indicate poor
scaling. Consider rescaling the design matrix in such cases.
Covariance/Variance/Correlation Matrix US Residual
\begin{tabular}{lrlrl}
8.738 & 0.5848 & 0.2532 & 0.1518 & 0.2373 \\
7.284 & 17.75 & 0.5057 & 0.2658 & 0.4837 \\
0.2477 & 0.7052 & 0.1095 & 0.4193 & 0.1997 \\
0.8169 & 2.038 & 0.2526 & 3.314 & \(0.9232 \mathrm{E}-01\) \\
0.8713 & 2.531 & \(0.8210 \mathrm{E}-01\) & 0.2087 & 1.543
\end{tabular}

Covariance/Variance/Correlation Matrix US us(TrLit1234).id(lit
\begin{tabular}{lrll}
3.847 & 0.6368 & 0.2472 & \(-0.7180 \mathrm{E}-01\) \\
2.523 & 4.079 & 0.6454 & -0.4860 \\
\(0.7674 \mathrm{E}-01\) & 0.2063 & \(0.2504 \mathrm{E}-01\) & -0.3706
\end{tabular}
16.10 Multivariate animal genetics data - Sheep
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline -0.1182 & -0.8241 & -0.4923E-01 & 0.7049 & & & & \\
\hline \multicolumn{8}{|l|}{Covariance/Variance/Correlation Matrix XFA xfa1(TrDam12).id(dam} \\
\hline 1.614 & 1.0000 & 1.0000 & & & & & \\
\hline 1.465 & 1.330 & 1.0000 & & & & & \\
\hline 1.270 & 1.153 & 1.0000 & & & & & \\
\hline \multicolumn{8}{|l|}{Covariance/Variance/Correlation Matrix XFA xfa3(Trait).nrm(tag)} \\
\hline 1.389 & 0.2978 & 0.1871 & 0.2861 & -0.4630E-01 & -0.9303E-03 & 0.9948 & -0.1017 \\
\hline \(0.7379 \mathrm{E}-01\) & 0.4419E-01 & -0.8809 & -0.1709 & -0.1009 & -0.8568 & 0.2526 & -0.4495 \\
\hline \(0.5629 \mathrm{E}-01\) & -0.4726E-01 & \(0.6514 \mathrm{E}-01\) & 0.3410 & 0.3155E-01 & 0.8583 & 0.2355 & 0.4560 \\
\hline 0.2820 & -0.3004E-01 & \(0.7277 \mathrm{E}-01\) & 0.6992 & -0.4761 & \(0.2416 \mathrm{E}-01\) & 0.3414 & 0.5260 \\
\hline -0.1869E-01 & -0.7261E-02 & \(0.2757 \mathrm{E}-02\) & -0.1363 & 0.1173 & 0.5210 & -0.1323 & -0.8432 \\
\hline -0.1097E-02 & -0.1801 & 0.2190 & \(0.2020 \mathrm{E}-01\) & 0.1784 & 1.0000 & 0.000 & 0.000 \\
\hline 1.173 & \(0.5310 \mathrm{E}-01\) & \(0.6011 \mathrm{E}-01\) & 0.2855 & -0.4530E-01 & 0.000 & 1.0000 & 0.000 \\
\hline -0.1199 & -0.9449E-01 & 0.1164 & 0.4398 & -0.2888 & 0.000 & 0.000 & 1.0000 \\
\hline
\end{tabular}

Note that the XFA matrix associated with tag has 8 rows (and columns) the first five relate to the five traits and the last three relate to the three factors.

\section*{Bibliography}

Breslow, N. E. (2003). Whither PQL?, Technical Report 192, UW Biostatistics Working Paper Series, University of Washington.
URL: http://www.bepress.com/uwbiostat/paper192/
Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association 88: 9-25.

Breslow, N. E. and Lin, X. (1995). Bias correction in generalised linear mixed models with a single component of dispersion, Biometrika 82: 81-91.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics, Chapman and Hall.
Cox, D. R. and Snell, E. J. (1981). Applied Statistics; Principals and Examples, Chapman and Hall.

Cressie, N. A. C. (1991). Statistics for spatial data, John Wiley and Sons.
Cullis, B. R. and Gleeson, A. C. (1991). Spatial analysis of field experiments - an extension to two dimensions, Biometrics 47: 1449-1460.

Cullis, B. R., Gleeson, A. C., Lill, W. J., Fisher, J. A. and Read, B. J. (1989). A new procedure for the analysis of early generation variety trials, Applied Statistics 38: 361375.

Cullis, B. R., Gogel, B. J., Verbyla, A. P. and Thompson, R. (1998). Spatial analysis of multi-environment early generation trials, Biometrics 54: 1-18.

Dempster, A. P., Selwyn, M. R., Patel, C. M. and Roth, A. J. (1984). Statistical and computational aspects of mixed model analysis., Applied Statistics 33: 203-214.

Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, John Wiley and Sons, New York, 3rd Edition.

Fernando, R. and Grossman, M. (1990). Genetic evaluation with autosomal and xchromosomal inheritance, Theoretical and Applied Genetics 80: 75-80.

Gilmour, A. R. (2007). Mixed model regression mapping for qtl detection in experimental crosses., Computational Statistics and Data Analysis 51: 3749-3764.

Gilmour, A. R., Cullis, B. R. and Verbyla, A. P. (1997). Accounting for natural and extraneous variation in the analysis of field experiments, Journal of Agricultural, Biological, and Environmental Statistics 2: 269-273.

Gilmour, A. R., Cullis, B. R., Welham, S. J., Gogel, B. J. and Thompson, R. (2004). An efficient computing strategy for prediction in mixed linear models, Computational Statistics and Data Analysis 44: 571-586.

Gilmour, A. R., Thompson, R. and Cullis, B. R. (1995). AI, an efficient algorithm for REML estimation in linear mixed models, Biometrics 51: 1440-1450.

Gleeson, A. C. and Cullis, B. R. (1987). Residual maximum likelihood (REML) estimation of a neighbour model for field experiments, Biometrics 43: 277-288.

Gogel, B. J. (1997). Spatial analysis of multi-environment variety trials, PhD thesis, Department of Statistics, University of Adelaide.

Goldstein, H. and Rasbash, J. (1996). Improved approximations for multilevel models with binary response, Journal of the Royal Statistical Society A - General 159: 505-513.

Goldstein, H., Rasbash, J., Plewis, I., Draper, D., Browne, W., Yang, M., Woodhouse, G. and Healy, M. (1998). A user's guide to MLwiN, Institute of Education, London. URL: http://multilevel.ioe.ac.uk/

Green, P. J. and Silverman, B. W. (1994). Nonparametric regression and generalized linear models, Chapman and Hall.

Harvey, W. R. (1977). Users' guide to LSML76, The Ohio State University, Columbus.
Harville, D. A. (1997). Matrix Algebra from a statisticians perspective., Springer-Verlaag.
Harville, D. and Mee, R. (1984). A mixed model procedure for analysing ordered categorical data, Biometrics 40: 393-408.

Haskard, K. A. (2006). Anisotropic Matérn correlation and other issues in model-based geostatistics, PhD thesis, BiometricsSA, University of Adelaide.

Kammann, E. E. and Wand, M. P. (2003). Geoadditive models, Applied Statistics 52(1): 118.

Keen, A. (1994). Procedure IRREML, GLW-DLO Procedure Library Manual, Agricultural Mathematics Group, Wageningen, The Netherlands, pp. Report LWA-94-16.

Kenward, M. G. and Roger, J. H. (1997). The precision of fixed effects estimates from restricted maximum likelihood, Biometrics 53: 983-997.

Lane, P. W. and Nelder, J. A. (1982). Analysis of covariance and standardisation as instances of predicton, Biometrics 38: 613-621.

McCulloch, C. and Searle, S. R. (2001). Generalized, Linear, and Mixed Models, Wiley.

Meuwissen and Lou (1992). Forming iniverse nrm, Genetics, Selection and Evolution 24: 305313.

Millar, R. and Willis, T. (1999). Estimating the relative density of snapper in and around a marine reserve using a log-linear mixed-effects model, Australian and New Zealand Journal of Statistics 41: 383-394.

Nelder, J. A. (1994). The statistics of linear models: back to basics, Statistics and Computing 4: 221-234.

Patterson, H. D. and Thompson, R. (1971). Recovery of interblock information when block sizes are unequal, Biometrika 31: 100-109.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS., SpringerVerlaag.

Quaas, R. L. (1976). Computing the diagonal elements and inverse of a large numerator relationship matrix., Biometrics 32: 949-953.

Robinson, G. K. (1991). That blup is a good thing: The estimation of random effects, Statistical Science 6: 15-51.

Rodriguez, G. and Goldman, N. (2001). Improved estimation procedures for multilevel models with binary response: A case study, Journal of the Royal Statistical Society A General 164(2): 339-355.

Sargolzaei, Iwaisaki and Colleau (2005). A fast algorithm for computing inbreeding coefficients in large populations, Genetics, Selection and Evolution 122: 325-331.

Schall, R. (1991). Estimation in generalized linear models with random effects, Biometrika 78(4): 719-27.

Searle, S. R. (1971). Linear Models, New York: John Wiley and Sons, Inc.
Searle, S. R. (1982). Matrix algebra useful for statistics, New York: John Wiley and Sons, Inc.

Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components, New York: John Wiley and Sons, Inc.

Self, S. C. and Y., L. K. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions., Journal of the American Statistical Society 82: 605-610.

Smith, A. B., Cullis, B. R., Gilmour, A. and Thompson, R. (1998). Multiplicative models for interaction in spatial mixed model analyses of multi-environment trial data, Proceedings of the International Biometrics Conference.

Smith, A., Cullis, B. R. and Thompson, R. (2001). Analysing variety by environment data using multiplicative mixed models and adjustments for spatial field trend, Biometrics 57: 1138-1147.

Smith, A., Cullis, B. R. and Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches [review], Journal of Agricultural Science 143: 449-462.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging, Springer-Verlag, New York.

Stevens, M. M., Fox, K. M., Warren, G. N., Cullis, B. R., Coombes, N. E. and Lewin, L. G. (1999). An image analysis technique for assessing resistance in rice cultivars to root-feeding chironomid midge larvae (diptera: Chironomidae), Field Crops Research 66: 25-26.

Stroup, W. W., Baenziger, P. S. and Mulitze, D. K. (1994). Removing spatial variation from wheat yield trials: a comparison of methods, Crop. Sci 86: 62-66.

Thompson, R. (1980). Maximum likelihood estimation of variance components, Math. Operationsforsch Statistics, Series, Statistics 11: 545-561.

Thompson, R., Cullis, B., Smith, A. and Gilmour, A. (2003). A sparse implementation of the average information algorithm for factor analytic and reduced rank variance models, Australian and New Zealand Journal of Statistics 45: 445-459.

Verbyla, A. P. (1990). A conditional derivation of residual maximum likelihood, Australian Journal of Statistics 32: 227-230.

Verbyla, A. P., Cullis, B. R., Kenward, M. G. and Welham, S. J. (1999). The analysis of designed experiments and longitudinal data by using smoothing splines (with discussion), Applied Statistics 48: 269-311.

Waddington, D., Welham, S. J., Gilmour, A. R. and Thompson, R. (1994). Comparisons of some glmm estimators for a simple binomial model., Genstat Newsletter 30: 13-24.

Welham, S. J. (2005). Glmm fits a generalized linear mixed model., in R. Payne and P. Lane (eds), GenStat Reference Manual 3: Procedure Library PL17,, VSN International, Hemel Hempstead, UK, pp. 260-265.

Welham, S. J., Cullis, B. R., Gogel, B. J., Gilmour, A. R. and Thompson, R. (2004). Prediction in linear mixed models, Australian and New Zealand Journal of Statistics 46: 325-347.

Wolfinger, R. D. (1996). Heterogeneous variance-covariance structures for repeated measures, Journal of Agricultural, Biological, and Environmental Statistics 1: 362-389.

Wolfinger, R. and O'Connell, M. (1993). Generalized linear mixed models: A pseudolikelihood approach, Journal of Statistical Computation and Simulation 48: 233-243.

Yates, F. (1935). Complex experiments, Journal of the Royal Statistical Society, Series B 2: 181-247.```

