![]() |
Number of production-other traits: | 23 |
Number of QTL / associations found: | 161 |
Number of chromosomes where QTL / associations are found: | 24 |
Chromosomes | Total χ2 | df | p-values | FDR * | Size of χ2 |
Chromosome Z | 1.72017 | 23 | 0.998329325823115 | 9.983293e-01 | ![]() |
Chromosome 1 | 4270.29178 | 23 | 9e-41 | 2.160000e-39 | ![]() |
Chromosome 2 | 63.14880 | 23 | 1.322785e-05 | 2.442065e-05 | ![]() |
Chromosome 3 | 235.72033 | 23 | 3.372446e-37 | 4.046935e-36 | ![]() |
Chromosome 4 | 37.14891 | 23 | 0.03136470 | 4.181960e-02 | ![]() |
Chromosome 5 | 47.14885 | 23 | 0.002146623 | 3.030527e-03 | ![]() |
Chromosome 6 | 1.72017 | 23 | 0.998329325823115 | 9.983293e-01 | ![]() |
Chromosome 7 | 25.14889 | 23 | 0.3426545 | 4.111854e-01 | ![]() |
Chromosome 8 | 135.72024 | 23 | 5.7125e-18 | 3.427500e-17 | ![]() |
Chromosome 9 | 25.14889 | 23 | 0.3426545 | 4.111854e-01 | ![]() |
Chromosome 10 | 76.00603 | 23 | 1.390037e-07 | 2.780074e-07 | ![]() |
Chromosome 11 | 47.14885 | 23 | 0.002146623 | 3.030527e-03 | ![]() |
Chromosome 12 | 1.72017 | 23 | 0.998329325823115 | 9.983293e-01 | ![]() |
Chromosome 13 | 76.00603 | 23 | 1.390037e-07 | 2.780074e-07 | ![]() |
Chromosome 14 | 47.14885 | 23 | 0.002146623 | 3.030527e-03 | ![]() |
Chromosome 15 | 1.72017 | 23 | 0.998329325823115 | 9.983293e-01 | ![]() |
Chromosome 16 | 111.72020 | 23 | 1.252091e-13 | 4.292883e-13 | ![]() |
Chromosome 17 | 47.14885 | 23 | 0.002146623 | 3.030527e-03 | ![]() |
Chromosome 18 | 76.00603 | 23 | 1.390037e-07 | 2.780074e-07 | ![]() |
Chromosome 19 | 111.72020 | 23 | 1.252091e-13 | 4.292883e-13 | ![]() |
Chromosome 20 | 76.00603 | 23 | 1.390037e-07 | 2.780074e-07 | ![]() |
Chromosome 24 | 111.72020 | 23 | 1.252091e-13 | 4.292883e-13 | ![]() |
Chromosome 26 | 76.00603 | 23 | 1.390037e-07 | 2.780074e-07 | ![]() |
Chromosome 27 | 135.72024 | 23 | 5.7125e-18 | 3.427500e-17 | ![]() |
Traits | Total χ2 | df | p-values | FDR * | Size of χ2 |
Bone index | 2.83331 | 22 | 0.9999997 | 9.999997e-01 | |
Bone mineral content | 28.0963 | 22 | 0.1725117 | 4.098730e-01 | |
Bone mineral density | 16.92668 | 22 | 0.7673956 | 9.999997e-01 | |
Carcass ash content, dry matter basis | 29.46793 | 22 | 0.13198 | 3.794425e-01 | |
Carcass protein content | 2.83331 | 22 | 0.9999997 | 9.999997e-01 | |
Carcass protein content, dry matter basis | 16.05126 | 22 | 0.8133336 | 9.999997e-01 | |
Carcass water content | 11.38459 | 22 | 0.9688206 | 9.999997e-01 | |
Femur bending strength | 65.75482 | 22 | 3.025885e-06 | 1.739884e-05 | |
Femur bone mineral content | 6.95447 | 22 | 0.9990318 | 9.999997e-01 | |
Femur bone mineral density | 70.72213 | 22 | 5.089214e-07 | 3.901731e-06 | |
Femur torsional strength | 88.8846 | 22 | 5.302217e-10 | 1.219510e-08 | |
Humerus bone mineral content | 27.53027 | 22 | 0.1917750 | 4.098730e-01 | |
Humerus bone mineral density | 24.83331 | 22 | 0.3051124 | 4.678390e-01 | |
Humerus breaking strength | 5.66664 | 22 | 0.999819 | 9.999997e-01 | |
Tibia bone mineral content | 41.12331 | 22 | 0.007967006 | 3.054019e-02 | |
Tibia bone mineral density | 19.6716 | 22 | 0.6035735 | 8.676369e-01 | |
Tibia breaking strength | 38.7699 | 22 | 0.01499288 | 4.926232e-02 | |
Tibia dry matter content | 25.83331 | 22 | 0.2589076 | 4.253482e-01 | |
Tibia modulus of elasticity | 25.83331 | 22 | 0.2589076 | 4.253482e-01 | |
Tibia strain | 25.83331 | 22 | 0.2589076 | 4.253482e-01 | |
Tibia strength | 44.32947 | 22 | 0.003224964 | 1.483483e-02 | |
Tibia stress | 27.41112 | 22 | 0.1960262 | 4.098730e-01 | |
Transport loss | 79.49998 | 22 | 1.957745e-08 | 2.251407e-07 |
No correlation data found on these traits |
Data | ![]() |
Chi'Square Test | ![]() |
Fisher's Exact Test | |||
Number of chrom.: | 24 | χ2 | = | 5838.714910 | |||
Number of traits: | 23 | df | = | 506 | |||
Number of QTLs: | 161 | p-value | = | 0 |
FOOT NOTE: * : FDR is short for "false discovery rate", representing the expected proportion of type I errors. A type I error is where you incorrectly reject the null hypothesis, i.e. you get a false positive. It's statistical definition is FDR = E(V/R | R > 0) P(R > 0), where V = Number of Type I errors (false positives); R = Number of rejected hypotheses. Benjamini–Hochberg procedure is a practical way to estimate FDR.
![]() |
© 2003-2025:
USA · USDA · NRPSP8 · Program to Accelerate Animal Genomics Applications.
|