Update: Identification of Regulatory Elements in Livestock Species

January 12, 2018

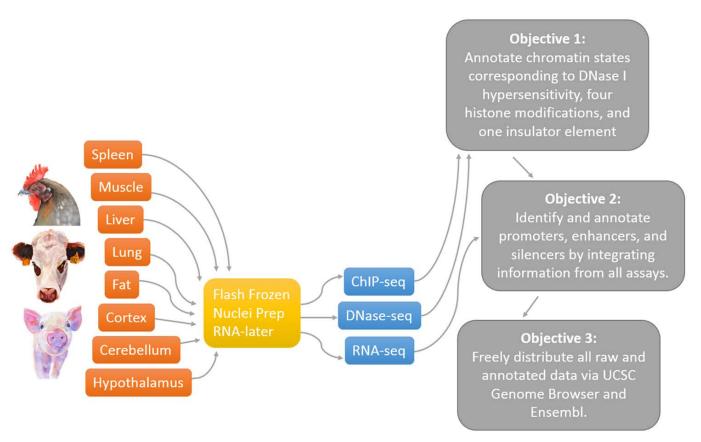
FAANG Workshop

H. Zhou¹, P. Ross¹, C. Kern¹, P. Saelao¹, Y. Wang¹, M. Halstead¹, K. Chanthavixay¹, I. Korf¹, M. Delany¹, H. Cheng², J. Medrano¹, A. Van Eenennaam¹, C. Tuggle³, and C. Ernst⁴, N. Trakooljul⁵, K. Wimmers⁵, Z. Jiang⁶ ¹University of California, Davis, Davis, CA, USA; ²USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA; ³Iowa State University, Ames, IA, USA; ⁴Michigan State University, East Lansing, MI, USA; FBN, Institute for Genome Biology, Dummerstorf, Germany; Washington State University, Pullman, WA, USA

Overall Goal

Generate a comprehensive resource of functional regulatory elements for the chicken, cattle, and pig genomes

Livestock breeds


- Adult stages
- Chicken
 - > F1 (Line 6 x 7) from ADOL
 - 2 males and 2 females
 - > 20 weeks of age
- Cattle
 - Line 1 Hereford from Fort Keogh
 Livestock and Range Research Lab

- 2 males and 2 females from same sire
- > 14 months of age
- > Pig
 - Yorkshire from MSU
 - 2 male littermates (castrated)
 - ➢ 6 months of age

Tissues collected

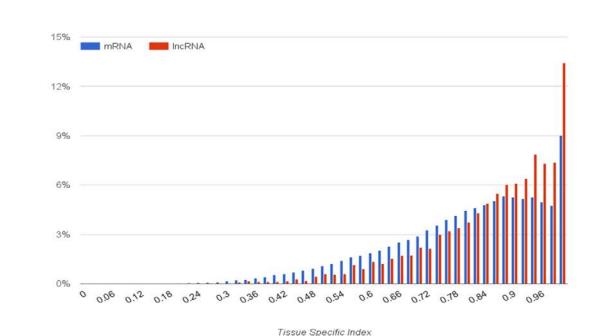
- Wide range of tissues collected
- > Total tissues collected:
 - Chicken: 29 tissues (92 samples:SAMEA4454482-4455404)
 - > Cattle: 102 tissues (326 samples:SAMEA4454615-4455481)
 - Pig: 30 tissues (46 sampes:SAMEA4454570-4454614)
- Scope of current project:
 - 2 male biological replicates from each species
 - > 8 tissues: Adipose, Cerebellum, Cortex, Hypothalamus, Liver, Lung, Muscle, Spleen

Project overview

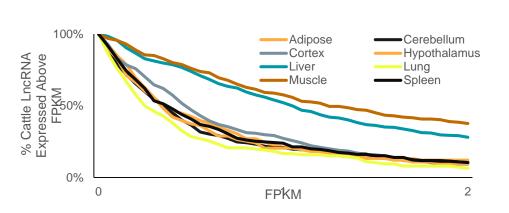
Assays

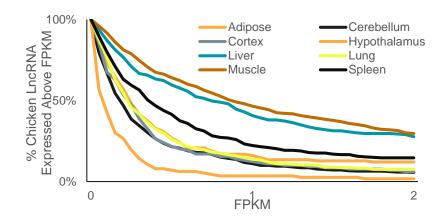
- Stranded RNA-seq
- Chromatin accessibility: DNase-seq or ATAC-seq
- > Histone modification marks
 - ➤ H3K4me3 (promoters of active genes and transcription starts)
 - > H3K27me3 (silence)
 - > H3K27ac (active regulatory elements)
 - > H3K4me1 (enhancers and other distal elements)
- Transcription factor CTCF (insulator)

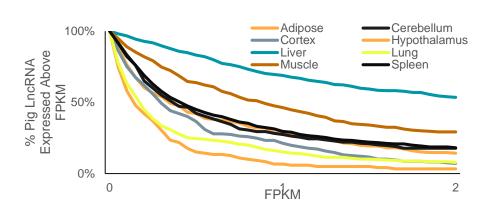
Progress of UC Davis FAANG



	RNA-seq	Data Analysis		Data	Data Analysis		Data Analysis	
D	Nase/ATAC- seq	Data Analysis Data Analysis		Data Analysis	Chromatin Sheared	Data	Analysis	
	H3K4me3			Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	
	H3K27me3			Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	
	H3K4me1	Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	
	НЗК27ас	Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	
	CTCF	Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	
(FBN)	RRBS-seq	Data	Analysis	Data	Analysis	Tissues	s Collected	
(WSU)	WTTS-seq	Data	Analysis	Tissues	s Collected	Tissues	s Collected	


Long ncRNAs are more tissue-specific than mRNA




% of Transcripts

Expression of tissue-specific IncRNAs

	Chicken	Cattle	Pig
Adipose	149	174	237
Cerebellum	389	202	258
Cortex	129	195	197
Hypothalamus	113	83	119
Liver	300	361	517
Lung	291	126	334
Muscle	273	226	246
Spleen	301	230	331

Enirched GO terms for genes associated with conserved IncRNAs across 3 species

Chicken	Pig	Cattle
chromatin silencing	chromatin assembly	chromatin assembly
negative regulation of gene expression, epigenetic	nucleosome assembly	chromatin assembly or disassembly
nucleosome assembly	chromatin assembly or disassembly	nucleosome assembly
chromatin assembly	DNA packaging	DNA packaging
chromatin assembly or disassembly	nucleosome organization	nucleosome organization
gene silencing	chromatin organization	chromatin organization
nucleosome organization	DNA conformation change	DNA conformation change
cell fate commitment	regulation of gene expression	protein-DNA complex assembly
embryonic skeletal system morphogenesis	chromatin silencing	protein-DNA complex subunit organization
regulation of production of molecular mediator of	negative regulation of gene expression,	
immune response	epigenetic	innate immune response in mucosa

Enirched GO terms for genes associated with tissue-specific IncRNAs in chicken

Adipose	Cerebellum	Cortex	Hypothalamus	Liver	Lung	Muscle	Spleen
skeletal system development	nervous system development	nervous system development	cellular macromolecule biosynthetic process negative regulation of	chemotaxis	Notch signaling pathway	growth cellular	regulation of transcription, DNA-templated
ossification	regulation of developmental growth	regulation of cell differentiation	transcription from RNA polymerase II promoter	taxis	negative regulation of growth	macromolecule biosynthetic process	regulation of RNA metabolic process
gene expression	modulation of synaptic transmission	regulation of multicellular organismal development	negative regulation of cellular biosynthetic process	eye morphogenesis	regulation of glycoprotein biosynthetic process	developmental growth	regulation of nucleobase- containing compound metabolic process nucleobase-containing
regulation of gene expression	memory	neuron differentiation	organ morphogenesis	camera-type eye morphogenesis	response to metal ion	reproductive structure development	compound biosynthetic process
transcription, DNA-templated	neuron projection development	neuron projection development	negative regulation of biosynthetic process	regulation of leukocyte chemotaxis	regulation of glycoprotein metabolic process	reproductive system development	regulation of nitrogen compound metabolic process

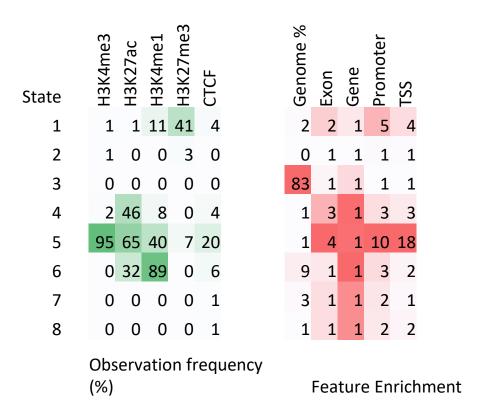
Enirched GO terms for genes associated with tissue-specific IncRNAs in cattle

Adipose	Cerebellum	Cortex	Hypothalamu s	Liver	Lung	Muscle	Spleen
skeletal system morphogenesis	regionalization	response to endogenous stimulus	central nervous system development	monocarboxylic acid p	pattern specification process	muscle tissue development	lymphocyte activation
skeletal system development	pattern specification process	response to organic substance	brain development	carboxylic acid metabolic process	embryonic morphogenesis	organ morphogenesis	regulation of immune system process
positive regulation of cell proliferation	spinal cord development	positive regulation of transferase activity	head development	organic acid metabolic process	embryonic organ morphogenesis	positive regulation of myoblast differentiation	immune system development
protein modification process	modulation of excitatory postsynaptic potential	regulation of signal transduction	nervous system development	oxoacid metabolic process	organ morphogenesis	striated muscle tissue development	T cell differentiation
cellular protein modification process	regulation of membrane potential	response to organonitrogen compound	cell development	monocarboxylic acid a metabolic process	anatomical structure formation	skeletal muscle tissue development	single organism cell adhesion

Peaks called in chicken, pig and cattle

Chicken	H3K4me3	H3K27me3	H3K4me1	H3K27ac	CTCF	DHS
Liver	12,987	29,265	36,098	26,106	19,517	56,443
Lung	14,279	2,401	8,848	23,867	7,831	73,486
Spleen	18,089	965	12,639	21,961	12,379	51,615
Cereb.	23,057	28,379				88,401
Pig	H3K4me3	H3K27me3	H3K4me1	H3K27ac	CTCF	ATAC-seq
Liver	28,082	50,147	20,169	110,963	17,414	93,700
Lung	24,467	14,009	20,755	28,727	18,914	169,438
Spleen	23,504	25,770	29,163	57,422	28,545	117,246
Cattle	H3K4m	e3 H3K27n	ne3 H3k	(4me1 l	H3K27ac	ATAC-seq
Live	r	9,5	356 4	18,320	59,947	214,035
Lung	27,5	00 28,	975	1,760	16,758	368,757
Spleer	n 24,0	57	4	6,090	37,694	358,115

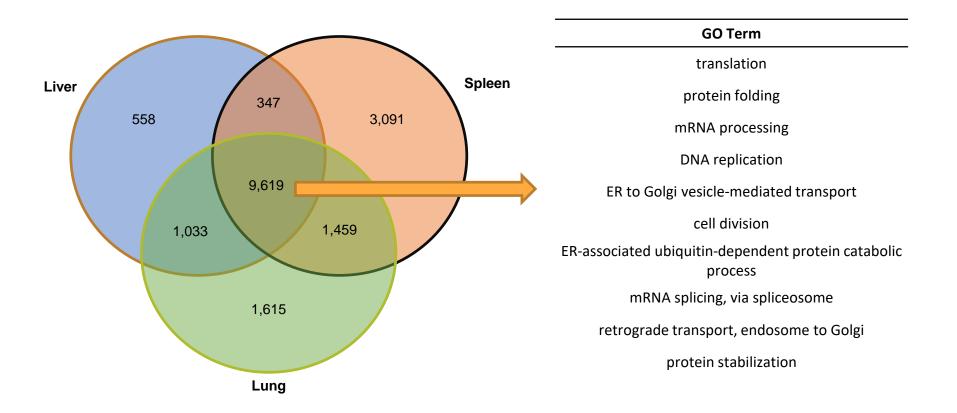
Conservation of H3K4me3 and H3K4me1 peaks with human ENCODE


H3K4me3		Peaks in conserved genomic regions	Matches EN	CODE peak
	Liver	856	665	77.69%
Chicken	Lung	547	289	52.83%
	Liver 856 Spleen 378 Liver 8,533 Liver 8,533 Liver 8,130 Spleen 7,236 March Spleen 2,236 March Spleen 3,236 March Spleen 3,236 March Spleen 3,236 March Spleen 3,236 March Spleen 8,236 March March Spleen 8,236 March March Spleen 8,236 March March	378	321	84.92%
Chicken Pig H3K4me1	Liver	8,533	5,902	69.17%
	Lung	8,130	4,707	57.90%
	Spleen	7,236	6,134	84.77%
H3K4me1		Peaks in conserved genomic regions	<u>Matches</u>	ENCODE peak
Chicken	Lung	375	37	9.87%
	Spleen	89	15	16.85%
Pig	Lung	4,047	1,368	33.80%
	Spleen	856 665 7 547 289 5 1 378 321 8 8,533 5,902 6 8,130 4,707 5 1 7,236 6,134 8 Peaks in conserved genomic regions Matches ENCO 375 37 9 1 89 15 1 4,047 1,368 3	14.15%	

Identification of promoter, enhancer, and insulator elements

DNase-seq and ChIP-seq peak is categorized based on genomic location: Promoter (2kb upstream of TSS), 5' UTR, 3' UTR, Exon, Intron, Intergenic.

	Activation Marks						
Regulatory							
Element	ATAC-seq	H3K4me3	H3K27me3	H3K27ac	H3K4me1	CTCF	
Active Promoter	+	+	-	+	-	+/-	
Inactive Promoter	+	-	+	-	+	+/-	
Active Enhancer	+	+/-	+/-	+	+	+/-	
Inactive Enhancer	+	+/-	+/-	-	+	+/-	
Insulator	+	-	-	-	-	+	


Chicken chromatin model

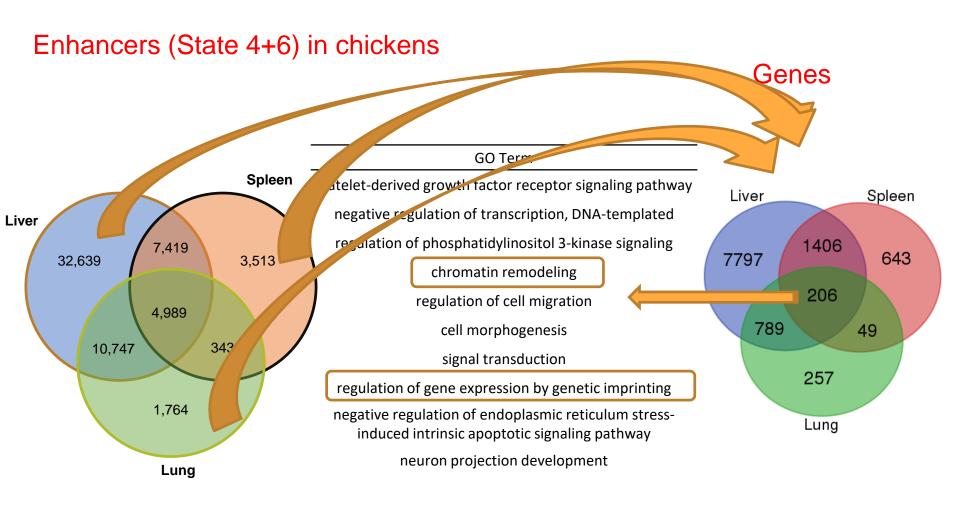
Chicken chromatin model

	Median			
State	Length	Candidate state annotation	# TSS	
1	1.6	Polycomb repressed	2,552	[H
2	0.2	Heterochrom; low signal	142	
3	6.8	Heterochrom; low signal	15,399	H
4	1.2	Enhancer	750	
5	1.2	Active promoter	7,765	H
6	0.6	Enhancer	3,922	
7	0.4	Heterochrom; low signal	1,032	
8	0.2	Heterochrom; low signal	411	
	(kb)		L	0 5 10 15 20 25 Expression (TPM)

Promoters (State 5) in chickens

Enriched GO terms for tissue-specific promoters

Liver


biosynthetic process glutathione metabolic process response to glucose insulin receptor signaling pathway tryptophan catabolic process to kynurenine anthranilate metabolic process quinolinate biosynthetic process reproductive structure development retinoid metabolic process 'de novo' NAD biosynthetic process from tryptophan

Lung

protein ubiquitination involved in ubiquitin-dependent protein catabolic process signal transduction protein deubiquitination ubiquitin-dependent protein catabolic process transcription, DNA-templated erythrocyte differentiation mRNA splicing, via spliceosome protein K63-linked ubiquitination positive regulation of transcription from RNA polymerase II promoter positive regulation of nuclear-transcribed mRNA poly(A) tail shortening

Spleen

intracellular signal transduction T cell receptor signaling pathway transmembrane receptor protein tyrosine kinase signaling pathway extrinsic apoptotic signaling pathway via death domain receptors regulation of GTPase activity multicellular organism development positive regulation of filopodium assembly negative thymic T cell selection negative regulation of gene expression positive regulation of transcription from RNA polymerase II promoter

Enriched GO terms genes associated with tissue-specific enhancers from a single tissue

Liver

intracellular protein transport

metabolic process

protein folding

cellular response to amino acid

histone acetylation

social behavior

positive regulation of fibroblast proliferation

regulation of cardiac muscle contraction

apoptotic cell clearance

double-strand break repair via homologous recombination

Lung

negative regulation of smooth muscle cell proliferation

positive regulation of transcription of nuclear large rRNA transcript from RNA polymerase I promoter

SRP-dependent cotranslational protein targeting to membrane anterior/posterior pattern specification regulation of transcription from RNA polymerase II promoter inner ear receptor stereocilium organization androgen receptor signaling pathway heart morphogenesis negative regulation of protein catabolic

process protein folding

Spleen

immune response

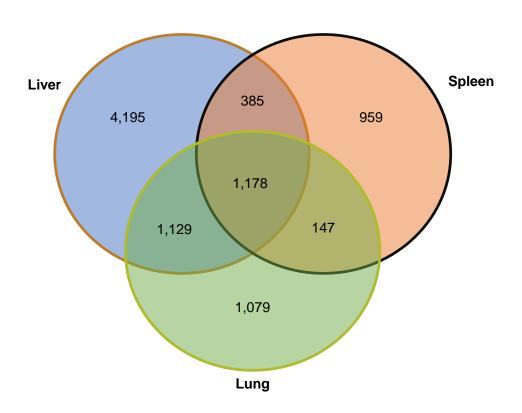
axonogenesis

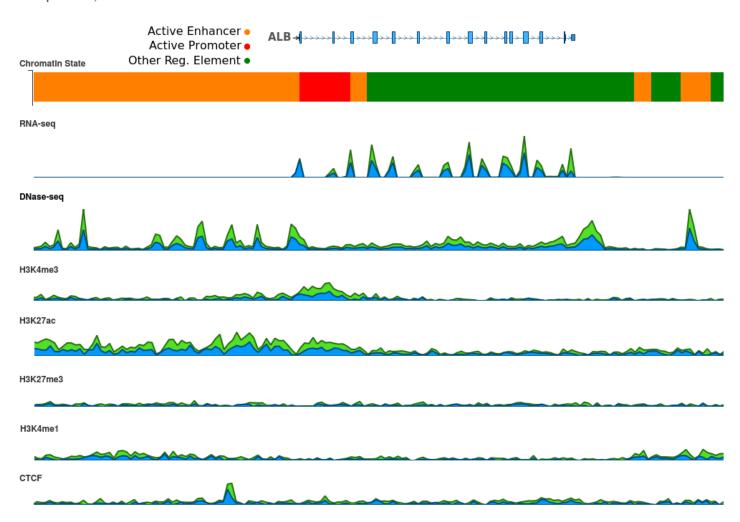
positive regulation of MAPK cascade

B cell receptor signaling pathway

chemotaxis

positive regulation of Rho protein signal transduction


MyD88-dependent toll-like receptor signaling pathway


cellular response to alkaloid

heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules

T cell differentiation

Polycomb repressed (State 1) in chickens

Whole transcriptome termini site sequencing in chickens

- Sequences 3' ends of transcripts
- Identifies alternative polyadenylation sites
- Expressed APS defined as >=10 reads
- Total of 42,094 APSs (alternative polyadenylation sites) found across tissues

<u>Tissue</u>	Expressed APSs
Liver A	5,845
Liver B	3,986
Lung A	10,228
Lung B	4,853
Spleen A	8,024
Spleen B	5,557
Muscle A	6,905
Muscle B	4,420
Adipose A	5,779
Adipose B	9,982
Cortex A	15,483
Cortex B	11,186
erebellum A	13,511
erebellum B	12,124

WTTS-seq correlation with chromatin marks in chickens

		<u>Liver</u>	<u>Lung</u>	<u>Spleen</u>	
DN	ase-seq	20.07%	36.89%	29.09%	
H	3K4me3	21.46%	44.13%	20.57%	
H3I	K27me3	2.01%	17.51%	3.78%	
Н	l3K27ac	24.32%	44.69%	31.25%	
H	3K4me1	20.47%	39.07%	30.40%	
	CTCF	23.12%	49.15%	34.40%	

Future work

> Finish sequencing for the rest of assays

Integrative analysis with all assays by ChromHMM

Distribute raw and annotated data via Ensembl and UCSC

Additional talks and posters

Talks:

Saturday 8:45am W166: Identification of regulatory regions in the swine genome

Tuesday afternoon: Attacking ATAC-seq in cryopreserved nuclei from livestock tissues

Posters:

P0509: Modification of ATAC-Seq Permits Profiling of Open Chromatin in Cryopreserved Chicken Lung

P0527: Genome-Wide Identification and Analysis of CTCF Binding Sites in chickens and pigs

P0460: Tissue Specific ChIP-Seq Analysis of Four Histone Modifications and an Insulator Element in Bovine Adult Male Tissue Samples

P0340: Optimization of Equine ChIP-Seq for the Functional Annotation of Animal Genomes

P0342: Update on the Equine FAANG Initiative: How the Community Is Using the Biobank

Acknowledgements

United States

of Food and Agriculture

UC Davis: Dr. Gerald Quon

Stam Lab (U. Washington)

This project is funded by Agriculture and Food Research Initiative Competitive Grant no. 2015-67015-22940 and National Need Fellowship Award #20143842021796 from the USDA National Institute of Food and Agriculture.

Further funding provided by the U.S. Poultry, Cattle, and Swine Genomes Coordination Funds

Zhou Lab 2017

V. Leesburg, USDA ARS Jim Kent, UCSC Laura Clarke, Paul Flicek, EBI Bin Ren, UCSD

UC Davis FAANG Group

(chicken, pig, cattle and horse)

