Functional annotation of the chicken

genome

USDA-NIFA-AFRI: 2018-67015-27499 FAANG Workshop - PAG 2024

Yvonne Drechsler, Ph.D. Professor College of Veterinary Medicine Western University of Health Sciences

R. David Hawkins, Ph.D. Professor DOM & Genome Sciences University of Washington

Chicken Genome Annotation

- Transcriptomics
 - Identify mRNA and IncRNAs expressed
 - determine isoforms
 - any putatively novel genes
 - Allele-specific expression (ASE)
- Epigenomics
 - Identify candidate *cis*-regulatory elements.
 - DNA methylation (WGBS)
 - DMRs for key comparisons
 - Allele-specific DNAme (ASM)
 - Chromatin dynamics
 - CUT&Tag for 5 histone modifications
 - QC greatly improved
 - ATAC-seq

Transcriptome & Epigenomic annotation of *cis*-regulatory elements

Targeted Tissues

- Immune cells
- Female reproductive tissues
- Large intestine
- Tissue-resident immune cells
- Immune-related tissues
- Muscle tissues
- Total: 20 cells/tissues
 - Fell short of every single assay in every single cell/tissue.

Assays

- RNA-seq
- ATAC-seq
- ChIP-seq/CUT&Tag
- WGBS

Data production line: ADOL line 6x7 F1.

Transcriptome

- ribo-minus RNA-seq
- PE150
- Targeted 50M read pairs
 - Median: 39.5M
- Quantitate RNA biotypes
- Identify isoforms
- Identify novel transcripts
- Identify novel genes
- Determine allele-specific expression (ASE)
- DEGs

Overbey et al., 2021; Oliveira de Lima, unpublished

NCBI vs. Ensembl

NCBI

116596 Transcripts 29088 Loci

Missed exons: 0/265223 (0.0%) Novel exons: 33257/337145 (9.9%) Missed introns:191/228760 (0.1%) Novel introns: 17454/264532 (6.6%) Missed loci: 0/24223 (0.0%) Novel loci:8658/29088 (29.8%)

Ensembl 119884 Transcripts

34310 Loci

Missed exons: 0/310680 (0.0%) Novel exons: 42323/395311 (10.7%) Missed introns: 344/254734 (0.1%) Novel introns: 20325/300331 (6.8%) Missed loci: 0/29507 (0.0%) Novel loci: 10657/34310 (31.1%)

Transcripts/isoforms/novel genes

NCBI basic stats (bGalGal1.mat.broiler.GRCg7b)

73,772 annotated NCBI transcripts 63 % 5.121 novel genes 0% 4 % 4 % 1% 3% 4 % 6 % 12 % code □ = □ c □ i □ i □ k □ m □ n □ o □ p □ s □ 11 other same strand overlap with reference ex ete exact match of intron chai

ione of the above (unknown, intergeni

- 116596 Transcripts
 - 95,189 protein-coding
 - 14,520 ncRNAs
 - 1,766 small RNAs
 - 5,121 novel genes at unannotated loci
- 29088 loci

Gene expression

Total of transcript isoforms	expressed by	' tissue/cell	type
------------------------------	--------------	---------------	------

Tissues	Expressed Genes
Jejunum	44109
Monocyte (blood)	44615
Spleen T Cells	44645
B.muscle ²	45710
Thymus	45950
Bursa	48341
B cell	49083
T.muscle ¹	47730
Proximal Cecum	50086
Magnum (od1)	49460
Macrophage (Kidney)	44252
Shell Gland (od3)	50685
Macrophage (lung)	52051
Isthmus (od2)	53050
lleum	56351
Macrophage (spleen)	58605
Ovary	65539
Macrophage (d3) ⁴	65018
Macrophage (d0) ³	68666
Macrophage (d6)⁵	73554

¹lliotibialis major; ²Pectoralis major; ³macrophage differentiatior ⁴macrophage differentiation at day 3; ⁵macrophage differentiati

Novel Isoforms

Novel Genes

Transcriptome

- Currently mapped to NCBI & Ensembl transcriptomes.
- StringTie for transcriptome assembly to find novel isoforms and new genes.
 - 30% of transcripts are novel isoforms of known genes
 - 4% of transcripts are novel genes
 - 22% predicted as mRNAs
 - 78% predicted IncRNAs

Chicken Stringtie annotation

Novel transcripts

Allele-specific expression

- Allele-specific expression, ASE, is the unequal expression between the two alleles.
 - One allele is not necessarily "unexpressed"
- Can be influenced by genetic or epigenetic factors.
 - regulatory variants
 - allelic DNA methylation

WGBS

- Targeted 20X coverage.
- Differential methylation analysis for key comparisons.
- Determine allele-specific methylated regions.
- Integration w/ other data ongoing.

DNA methylation (WGBS)

Average methylation

- lleum		64%
		65.7%
– – Jejunum		63.4%
Macrophage lung		59.1%
Trachea		62.3%
Cvary Ovary		62.2%
White meat		63.1%
Dark meat		60.1%
		63.6%
		64%
- OD1		61.4%
Thymus Thymus		72%
Spleen_Tcell		73.4%
-Bursa		68.8%
Bcell		66.5%
Monocyte		64.7%
Macrophage_d6		59%
Macrophage_d3		59.4%
Macrophage_d0		58.6%
	0%	100%
0% 50% 100%	Aver	rage
	DNA me	thylation
		-

Bisulfite conversion: >99%

Mapping efficiency: ~80.0%

Differentially Methylated Regions (DMRs)

DMRs of the reproductive tract

DMRs of the reproductive tract

Total DMRs detected per Pairwise Comparison

- # of DMRs = a proxy for dissimilarity b/w tissues
- Ovary had the highest DMR count = most different (in function / structure) from other tissues

DMR Genomic Context

DMR CpG Island Context

DMR KEGG Pathways (FDR Enrichment-Based)

Enrichment analysis

FDR Enrichment Value

2.5 2.0 1.5

DMR KEGG Pathways (FDR Enrichment-Based)

Enrichment Analysis: Mucin type O-glycan Biosynthesis Pathway

DMR KEGG Pathways (FDR Enrichment-Based)

Enrichment analysis

Enrichment Analysis: Gap Junction Pathway

Allele-specific methylation

- Allele-specific methylated regions (ASM/ASR) exhibit asymmetry in DNA methylation levels.
- Can result in ASE.
- Can be associated with trait or disease loci.
 - Largely driven by genetic variation.

Tissue B.muscle Bcell Bursa lleum Isthmus(od2) Jejunum Macrophage.D0 600 Macrophage.D3 Macrophage.Lung Magnum(od1) Ovary Proximal.Cecum Shell.Gland(od3) 60 T.muscle Tcell Thymus Trachea

ASM distribution by Tissue

Epigenomic annotation of cis-regulatory elements

- H3K4me3: novel & alternative promoters
- H3K4me1: enhancer elements
- CTCF: insulators, architectural elements
- H3K27ac: indicative of active promoters/enhancers
- H3K27me3: repressed, bivalent promoters
- H3K9me3: heterochromatin

ChIP-seq (re)optimization

CUT&Tag (Cleavage Under Targets & Tagmentation)

H3K27me3

H3K9me3

CTCF

ATAC-seq

Optimized tissue dissociation Nuclei isolation

Kaya-Okur, 2019

CUT&Tag: mapping histone marks

- Median reads per replicate: 6.3 M
- Median alignment rate per replicate : 93.4%
- Median peaks per replicate: 28000
- Median FRiPs score: 0.7

CUT&Tag: mapping histone marks

- Median reads per replicate: 6.3 M
- Median alignment rate per replicate : 93.4%
- Median peaks per replicate: 28000
- Median FRiPs score: 0.7

CUT&Tag-H3K4me3

H3K4me3: Novel Promoters

PROMOTERS

cCRE chromatin states

- Categorize cCREs for each • cell/tissue type.
 - Define active vs • poised regulatory elements

H3K27ac

9432

19749

H3K27ac

18971

17565

cCRE chromatin states

- Categorize cCREs for each cell/tissue type.
 - Define active vs poised regulatory elements

chromHMM annotations

H3K27me3	H3K4me1	H3K27ac	H3K4me3	H3K9me3
0.002	0.027	0.056	0.001	0.000
0.007	0.974	0.955	0.023	0.001
0.799	0.998	0.940	0.273	0.013
0.757	0.691	0.208	0.028	0.002
0.120	0.001	0.002	0.000	0.001
0.954	0.015	0.030	0.044	0.003
0.995	0.636	0.735	0.902	0.093
0.015	0.163	0.091	0.822	0.009
0.039	0.166	0.995	0.904	0.021
0.115	0.984	0.957	0.978	0.067
0.004	0.878	0.143	0.003	0.001
0.689	0.720	0.627	0.746	0.994
0.007	0.007	0.006	0.013	0.875
0.001	0.000	0.000	0.000	0.001

Candidate CREs

ATAC-seq

- Last batch in seq queue.
- Optimizations improved quality.
 - FRiP scores: ~0.4 0.7

ChIP-seq

- Tissue dissolution optimization.
- CUT&Tag improved data quality.
 - FRiP scores: 0.5 0.8

Wrapping Up

- Transcriptomes completed
 - Isoform and novel gene annotation
 - ASE analysis
 - DEGs for key comparison
- Chromatin mapping in final stages
 - A few samples still lacking some C/T replicates
 - Last batch (hopefully) of ATAC in seq queue
 - Some cell-specific analyses ongoing
- DNA methylation largely completed
 - DMRs for key comparisons
 - Allele-specific methylation
 - Integration with expression ongoing

Challenges

- Pandemic
 - Greatly delayed data production
- Chromatin mapping
 - Even started with mouse ENCODE tissue protocol for ChIP-seq
 - Optimization of tissue dissociations
 - CUT&Tag greatly improved data quality
 - CTCF still remains most variable
 - Optimization of ATAC-seq
- So much exciting data that analysis is still ongoing
 - Hopefully integrative analysis goes on for years!

Looking ahead

- More data integration
- Everything is moving to single-cell
 - In essence, two data modalities
- Bulk maps are still useful
 - Allow for multiple data modalities to be generated and integrated
- Utilizing current maps
 - Functional validation
 - Regulatory variants identification and validation
 - Mapping regulatory loops
 - Comparative analyses across species
- Challenges to systems to find "response elements"
 - Going beyond the static state

- How can others best utilize the current/forthcoming maps?
 - How to make the data more consumable for the community?
 - What type of files, format or interfaces are needed/usable?
 - How to flag QC for data in portal?
 - Regulatory element coordinate system?

Acknowledgements

<u>The Lab</u> Sid Gurajala Kenneth Lai Andressa Oliveira de Lima Eliah Overbey Gio Perez Jessica Phung Eryn Weston

Hans Cheng USDA, ARS Huaijun Zhou UCD <u>Western University</u> Yvonne Drechsler Pietro Catini Lisa Griggs Theros Ng Brandi Sparling Suzana Tkalcic

> <u>\$\$\$\$</u> USDA-NIFA-AFRI: 2018-67015-27499